59 research outputs found

    Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells

    Get PDF
    Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells

    "It's making contacts" : notions of social capital and implications for widening access to medical education

    Get PDF
    Acknowledgements Our thanks to the Medical Schools Council (MSC) of the UK for funding Study A; REACH Scotland for funding Study B; and Queen Mary University of London, and to the medical school applicants and students who gave their time to be interviewed. Our thanks also to Dr Sean Zhou and Dr Sally Curtis, and Manjul Medhi, for their help with data collection for studies A and B respectively. Our thanks also to Dr Lara Varpio, Uniformed Services University of the USA, for her advice and guidance on collating data sets and her comments on the draft manuscript.Peer reviewedPublisher PD

    HIF-1Ξ± inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1Ξ± inhibition on radioresistance of malignant glioma.</p> <p>Methods</p> <p>In this study, we investigated the effects of the inhibition of HIF-1Ξ± on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1Ξ± inhibition was achieved by siRNA targeting of HIF-1Ξ± or via chetomin, a disruptor of interactions between HIF-1Ξ± and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1Ξ± and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy) or hypoxic (2-15 Gy) conditions.</p> <p>Results</p> <p>Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF<sub>10</sub>: 1.35 and 1.18) and U343MG (DMF<sub>10</sub>: 1.78 and 1.48). However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF<sub>10</sub>: 0.86 and 1.35) and U343MG (DMF<sub>10</sub>: 1.33 and 1.02) cells.</p> <p>Conclusions</p> <p>Results from this <it>in vitro </it>study suggest that inhibition of HIF-1Ξ± is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.</p

    Inhibition of Akt sensitises neuroblastoma cells to gold(III) porphyrin 1a, a novel antitumour drug induced apoptosis and growth inhibition

    Get PDF
    Background:Gold(III) porphyrin 1a is a new class of anticancer drug, which inhibits cell proliferation of wide range of human cancer cell lines and induces apoptosis in human nasopharyngeal carcinoma cells. However, the underlying signalling mechanism by which gold(III) porphyrin 1a modifies the intracellular apoptosis pathways in tumour cells has not been explained in detail in neuroblastoma cells.Methods:Cell proliferation and apoptosis were determined by measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Annexin V binding, respectively. Western blot assay was used to detect proteins involved in apoptotic and Akt pathways. In vivo tumour growth was assessed by inoculating tumour cells to nude mice subcutaneously, and gold(III) porphyrin 1a was administrated intravenously.Results:This study assessed the antitumour effect and mechanism of gold(III) porphyrin 1a on neuroblastoma in vitro and in vivo. Gold(III) porphyrin 1a displayed a growth inhibition and induction of apoptosis in neuroblastoma cells effectively in vitro, which was accompanied with release of cytochrome c and Smac/DIABLO and caspases activation. Further studies indicated that gold(III) porphyrin 1a inhibited X-linked inhibitor of apoptosis (XIAP). However, we found that gold(III) porphyrin 1a can induce a survival signal, Akt activation within minutes and could last for at least 24 h. To further confirm association between activation of Akt and the effectiveness of gold(III) porphyrin 1a, neuroblastoma cells were treated with API-2, an Akt-specific inhibitor. API-2 sensitised cells to gold(III) porphyrin 1a-induced apoptosis and growth inhibition.Conclusion:These results suggested that Akt may be considered as a molecular brake that neuroblastoma cells rely on to slow down gold(III) porphyrin 1a-induced apoptosis and antiproliferation. Gold(III) porphyrin 1a is a mitochondrial apoptotic stimulus but also activates Akt, suggesting an involvement of Akt in mediating the effectiveness to growth inhibition and apoptosis by gold(III) porphyrin 1a and that inhibition of Akt can enhance the anticancer activity of gold(III) porphyrin 1a in neuroblastoma. Β© 2009 Cancer Research UK.published_or_final_versio
    • …
    corecore