77 research outputs found

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications

    Microbiota of the indoor environment: a meta-analysis

    Full text link
    BACKGROUND: As modern humans, we spend the majority of our time in indoor environments. Consequently, environmental exposure to microorganisms has important implications for human health, and a better understanding of the ecological drivers and processes that impact indoor microbial assemblages will be key for expanding our knowledge of the built environment. In the present investigation, we combined recent studies examining the microbiota of the built environment in order to identify unifying community patterns and the relative importance of indoor environmental factors. Ultimately, the present meta-analysis focused on studies of bacteria and archaea due to the limited number of high-throughput fungal studies from the indoor environment. We combined 16S ribosomal RNA (rRNA) gene datasets from 16 surveys of indoor environments conducted worldwide, additionally including 7 other studies representing putative environmental sources of microbial taxa (outdoor air, soil, and the human body). RESULTS: Combined analysis of subsets of studies that shared specific experimental protocols or indoor habitats revealed community patterns indicative of consistent source environments and environmental filtering. Additionally, we were able to identify several consistent sources for indoor microorganisms, particularly outdoor air and skin, mirroring what has been shown in individual studies. Technical variation across studies had a strong effect on comparisons of microbial community assemblages, with differences in experimental protocols limiting our ability to extensively explore the importance of, for example, sampling locality, building function and use, or environmental substrate in structuring indoor microbial communities. CONCLUSIONS: We present a snapshot of an important scientific field in its early stages, where studies have tended to focus on heavy sampling in a few geographic areas. From the practical perspective, this endeavor reinforces the importance of negative “kit” controls in microbiome studies. From the perspective of understanding mechanistic processes in the built environment, this meta-analysis confirms that broad factors, such as geography and building type, structure indoor microbes. However, this exercise suggests that individual studies with common sampling techniques may be more appropriate to explore the relative importance of subtle indoor environmental factors on the indoor microbiome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40168-015-0108-3) contains supplementary material, which is available to authorized users

    The Rotterdam Study: 2016 objectives and design update

    Full text link
    • …
    corecore