108 research outputs found

    Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human <it>retinoblastoma </it>(<it>Rb</it>) gene promoter in different tumoral cell lines.</p> <p>Methods</p> <p>To assess the DNA methylation status of the <it>Rb </it>promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a <it>GFP </it>reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. <it>Rb </it>gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays.</p> <p>Results</p> <p>We found that the inability of CTCF to bind to the <it>Rb </it>promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation.</p> <p>Conclusions</p> <p>This study indicates that CTCF plays an important role in maintaining the <it>Rb </it>promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.</p

    Wnt signalling in adenomas of familial adenomatous polyposis patients

    Get PDF
    BACKGROUND: Epigenetic silencing of Wnt antagonists and expression changes in genes associated with Wnt response pathways occur in early sporadic colorectal tumourigenesis, indicating that tumour cells are more sensitive to Wnt growth factors and respond differently. In this study, we have investigated whether similar changes occur in key markers of the Wnt response pathways in the genetic form of the disease, familial adenomatous polyposis (FAP). METHODS: We investigated epigenetic and expression changes using pyrosequencing and real-time RT-PCR in samples from seven patients without neoplasia, and matched normal and tumour tissues from 22 sporadic adenoma and 14 FAP patients. RESULTS: We found that 17 out of 24 (71%) FAP adenomas were hypermethylated at sFRP1, compared with 20 out of 22 (91%) of sporadic cases. This was reflected at the level of sFRP1 transcription, where 73% of FAP and 100% of sporadic cases were downregulated. Increased expression levels of c-myc and FZD3 were less common in FAP (35 and 46% respectively) than sporadic tumours (78 and 67% respectively). CONCLUSION: Overall, the changes in expression and methylation were comparable, although the degree of change was generally lower in the FAP adenomas. Molecular heterogeneity between multiple adenomas from individual FAP patients may reflect different developmental fates for these premalignant tumours

    Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery

    Get PDF
    DNA methylation and histone modifications are two major epigenetic events regulating gene expression and chromatin structure, and their alterations are linked to human carcinogenesis. DNA methylation plays an important role in tumor suppressor gene inactivation, and can be revised by DNA methylation inhibitors. The reversible nature of DNA methylation forms the basis of epigenetic cancer therapy. However, it has been reported that DNA re-methylation and gene re-silencing could occur after removal of demethylation treatment and this may significantly hamper the therapeutic value of DNA methylation inhibitors. In this study we have provided detailed evidence demonstrating that mammalian cells possess a bona fide DNA methylation recovery system. We have also shown that DNA methylation recovery was mediated by the major human DNA methyltransferase, DNMT1. In addition, we found that H3K9-tri-methylation and H3K27-tri-methylation were closely associated with this DNA methylation recovery. These persistent transcriptional repressive histone modifications may have a crucial role in regulating DNMT1-mediated DNA methylation recovery. Our findings may have important implications towards a better understanding of epigenetic regulation and future development of epigenetic therapeutic intervention

    Aberrant Epigenetic Silencing Is Triggered by a Transient Reduction in Gene Expression

    Get PDF
    Aberrant epigenetic silencing plays a major role in cancer formation by inactivating tumor suppressor genes. While the endpoints of aberrant silencing are known, i.e., promoter region DNA methylation and altered histone modifications, the triggers of silencing are not known. We used the tet-off system to test the hypothesis that a transient reduction in gene expression will sensitize a promoter to undergo epigenetic silencing.The tet responsive promoter (P(TRE)) was used to drive expression of the selectable human HPRT cDNA in independent transfectants of an Hprt deficient mouse cell line. In this system, high basal HPRT expression is greatly reduced when doxycycline (Dox) is added to the culture medium. Exposure of the P(TRE)-HPRT transfectants to Dox induced HPRT deficient clones in a time dependent manner. A molecular analysis demonstrated promoter region DNA methylation, loss of histone modifications associated with expression (i.e., H3 lysine 9 and 14 acetylation and lysine 4 methylation), and acquisition of the repressive histone modification H3 lysine 9 methylation. These changes, which are consistent with aberrant epigenetic silencing, were not present in the Dox-treated cultures, with the exception of reduced H3 lysine 14 acetylation. Silenced alleles readily reactivated spontaneously or after treatment of cells with inhibitors of histone deacetylation and/or DNA methylation, but re-silencing of reactivated alleles did not require a new round of Dox exposure. Inhibition of histone deacetylation inhibited both the induction of silencing and re-silencing, whereas inhibition of DNA methylation had no such effect.This study demonstrates that a transient reduction in gene expression triggers a pathway for aberrant silencing in mammalian cells and identifies histone deacetylation as a critical early step in this process. DNA methylation, in contrast, is a secondary step in the silencing pathway under study. A model to explain these observations is offered

    Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis.</p> <p>Results</p> <p>We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts.</p> <p>Conclusions</p> <p>This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.</p

    An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation

    Get PDF
    The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory marks along with gene expression levels would provide greater power in capturing biological differences between leukemia subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-platform microarray studies

    CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer

    Get PDF
    Although only 1.5% of the human genome appears to code for proteins, much effort in cancer research has been devoted to this minimal fraction of our DNA. However, the last few years have witnessed the realization that a large class of non-coding RNAs (ncRNAs), named microRNAs, contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also shown that epigenetic silencing of microRNAs with tumor suppressor features by CpG island hypermethylation is a common hallmark of human tumors. Thus, we wondered whether there were other ncRNAs undergoing aberrant DNA methylation-associated silencing in transformed cells. We focused on the transcribed-ultraconserved regions (T-UCRs), a subset of DNA sequences that are absolutely conserved between orthologous regions of the human, rat and mouse genomes and that are located in both intra- and intergenic regions. We used a pharmacological and genomic approach to reveal the possible existence of an aberrant epigenetic silencing pattern of T-UCRs by treating cancer cells with a DNA-demethylating agent followed by hybridization to an expression microarray containing these sequences. We observed that DNA hypomethylation induces release of T-UCR silencing in cancer cells. Among the T-UCRs that were reactivated upon drug treatment, Uc.160+, Uc283+A and Uc.346+ were found to undergo specific CpG island hypermethylation-associated silencing in cancer cells compared with normal tissues. The analysis of a large set of primary human tumors (n=283) demonstrated that hypermethylation of the described T-UCR CpG islands was a common event among the various tumor types. Our finding that, in addition to microRNAs, another class of ncRNAs (T-UCRs) undergoes DNA methylation-associated inactivation in transformed cells supports a model in which epigenetic and genetic alterations in coding and non-coding sequences cooperate in human tumorigenesis

    Loss of a single Hic1 allele accelerates polyp formation in ApcΔ716 mice

    Get PDF
    Adenomatous polyposis coli (APC) gene mutations have been implicated in familial and sporadic gastrointestinal (GI) cancers. APC mutations are associated with autosomal dominant inheritance of disease in humans. Similarly, mice that contain a single mutant APC gene encoding a protein truncated at residue 716 (ApcΔ716) develop multiple polyps throughout the GI tract as early as 4 weeks after birth. Inactivation of another tumor suppressor gene, Hypermethylated in Cancer 1 (HIC1), often occurs in human colon cancers, among others, via CpG island hypermethylation. Homozygous deletion of Hic1 in mice results in major developmental defects and embryonic lethality. Hic1 heterozygotes have previously been shown to develop tumors of a variety of tissue types. We now report that loss of a single Hic1 allele can promote crypt hyperplasia and neoplasia of the GI tract, and Hic1+/−, Apc+/Δ716 double heterozygotes (DH) develop increased numbers of polyps throughout the GI tract at 60 days. Hic1 expression is absent in polyps from DH mice, with concomitant increased expression of two transcriptional repression targets of Hic1, Sirt1 and Sox9. Together, our data suggest that loss of a gene frequently silenced via epigenetic mechanisms, Hic1, can cooperate with loss of a gene mutated in GI cancer, Apc, to promote tumorigenesis in an in vivo model of multiple intestinal neoplasia

    Deciphering the pathogenesis of tendinopathy: a three-stages process

    Get PDF
    Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments

    Novel Vaccines to Human Rabies

    Get PDF
    Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered
    corecore