12 research outputs found

    Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    Get PDF
    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis

    Both anti-TNF and CTLA4 Ig treatments attenuate the disease severity of staphylococcal dermatitis in mice

    No full text
    Background RA patients being treated with biologics are known to have an increased risk of infections. We recently demonstrated that both CTLA4 Ig and anti-TNF treatment aggravate systemic Staphylococcus aureus (S. aureus) infection in mice, but with distinct clinical manifestations. However, the effects of CTLA4 Ig and anti-TNF treatments on a local S. aureus infection (e.g., skin infection) might differ from their effects on a systemic infection. Aims The aim of this study was to examine the differential effects of anti-TNF versus CTLA4 Ig treatment on S. aureus skin infections in mice. Method Abatacept (CTLA4 Ig), etanercept (anti-TNF treatment) or PBS was given to NMRI mice subcutaneously inoculated with S. aureus strain SH1000. The clinical signs of dermatitis, along with histopathological changes due to skin infection, were compared between the groups. Results Both CTLA4 Ig and anti-TNF treatment resulted in less severe skin infections and smaller post-infectious hyperpigmentation compared with controls. Consistent with the clinical signs of dermatitis, smaller lesion size, more epithelial hyperplasia and more granulation were found in skin biopsies from mice receiving anti-TNF compared with PBS controls. However, both CTLA4 Ig and anti-TNF therapy tended to prolong the healing time, although this finding was not statistically significant. Serum MCP-1 levels were elevated in the anti-TNF group relative to the CTLA4 Ig and PBS groups, whereas IL-6 levels were higher in PBS controls than in the other two groups. Both anti-TNF and CTLA4 Ig treatments tended to down-regulate the necrosis/apoptosis ratio in the locally infected skin tissue. Importantly, no tangible difference was found in the bacterial burden among groups. Conclusion Both CTLA4 Ig and anti-TNF therapies attenuate disease severity but may prolong the healing time required for S. aureus skin infections. Neither treatment has an impact on bacterial clearance in skin tissues
    corecore