8 research outputs found
Gene dysregulation is restored in the Parkinsonâs disease MPTP neurotoxic mice model upon treatment of the therapeutic drug CuII(atsm)
The administration of MPTP selectively targets the dopaminergic system resulting in Parkinsonism-like symptoms and is commonly used as a mice model of Parkinsonâs disease. We previously demonstrated that the neuroprotective compound Cu(II)(atsm) rescues nigral cell loss and improves dopamine metabolism in the MPTP model. The mechanism of action of Cu(II)(atsm) needs to be further defined to understand how the compound promotes neuronal survival. Whole genome transcriptomic profiling has become a popular method to examine the relationship between gene expression and function. Substantia nigra samples from MPTP-lesioned mice were evaluated using whole transcriptome sequencing to investigate the genes altered upon Cu(II)(atsm) treatment. We identified 143 genes affected by MPTP lesioning that are associated with biological processes related to brain and cognitive development, dopamine synthesis and perturbed synaptic neurotransmission. Upon Cu(II)(atsm) treatment, the expression of 40 genes involved in promoting dopamine synthesis, calcium signaling and synaptic plasticity were restored which were validated by qRT-PCR. The study provides the first detailed whole transcriptomic analysis of pathways involved in MPTP-induced Parkinsonism. In addition, we identify key therapeutic pathways targeted by a potentially new class of neuroprotective agents which may provide therapeutic benefits for other neurodegenerative disorders
Recommended from our members
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Abstract
Doping of liquid argon TPCs (LArTPCs) with a small
concentration of xenon is a technique for light-shifting and
facilitates the detection of the liquid argon scintillation
light. In this paper, we present the results of the first doping
test ever performed in a kiloton-scale LArTPC. From February to May
2020, we carried out this special run in the single-phase DUNE Far
Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total
liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen
contamination was present during the xenon doping campaign. The goal
of the run was to measure the light and charge response of the
detector to the addition of xenon, up to a concentration of
18.8 ppm. The main purpose was to test the possibility for
reduction of non-uniformities in light collection, caused by
deployment of photon detectors only within the anode planes. Light
collection was analysed as a function of the xenon concentration, by
using the pre-existing photon detection system (PDS) of ProtoDUNE-SP
and an additional smaller set-up installed specifically for this
run. In this paper we first summarize our current understanding of
the argon-xenon energy transfer process and the impact of the
presence of nitrogen in argon with and without xenon dopant. We then
describe the key elements of ProtoDUNE-SP and the injection method
deployed. Two dedicated photon detectors were able to collect the
light produced by xenon and the total light. The ratio of these
components was measured to be about 0.65 as 18.8 ppm of xenon were
injected. We performed studies of the collection efficiency as a
function of the distance between tracks and light detectors,
demonstrating enhanced uniformity of response for the anode-mounted
PDS. We also show that xenon doping can substantially recover light
losses due to contamination of the liquid argon by nitrogen.</jats:p