1,137 research outputs found

    Impaired Interoceptive Accuracy in Semantic Variant Primary Progressive Aphasia

    Get PDF
    Background: Interoception (the perception of internal bodily sensations) is strongly linked to emotional experience and sensitivity to the emotions of others in healthy subjects. Interoceptive impairment may contribute to the profound socioemotional symptoms that characterize frontotemporal dementia (FTD) syndromes, but remains poorly defined. Methods: Patients representing all major FTD syndromes and healthy age-matched controls performed a heartbeat counting task as a measure of interoceptive accuracy. In addition, patients had volumetric MRI for voxel-based morphometric analysis, and their caregivers completed a questionnaire assessing patients’ daily-life sensitivity to the emotions of others. Results: Interoceptive accuracy was impaired in patients with semantic variant primary progressive aphasia relative to healthy age-matched individuals, but not in behavioral variant frontotemporal dementia and nonfluent variant primary progressive aphasia. Impaired interoceptive accuracy correlated with reduced daily-life emotional sensitivity across the patient cohort, and with atrophy of right insula, cingulate, and amygdala on voxel-based morphometry in the impaired semantic variant group, delineating a network previously shown to support interoceptive processing in the healthy brain. Conclusion: Interoception is a promising novel paradigm for defining mechanisms of reduced emotional reactivity, empathy, and self-awareness in neurodegenerative syndromes and may yield objective measures for these complex symptoms

    Altered Time Awareness in Dementia

    Get PDF
    Our awareness of time, specifically of longer intervals spanning hours, days, months, and years, is critical for ensuring our sense of self-continuity. Disrupted time awareness over such intervals is a clinical feature in a number of frontotemporal dementia syndromes and Alzheimer's disease, but has not been studied and compared systematically in these diseases. We used a semi-structured caregiver survey to capture time-related behavioral alterations in 71 patients representing all major sporadic and genetic syndromes of frontotemporal dementia, in comparison to 28 patients with typical Alzheimer's disease and nine with logopenic aphasia, and 32 healthy older individuals. Survey items pertained to apparent difficulties ordering past personal events or estimating time intervals between events, temporal rigidity and clockwatching, and propensity to relive past events. We used a logistic regression model including diagnosis, age, gender, and disease severity as regressors to compare the proportions of individuals exhibiting each temporal awareness symptom between diagnostic groups. Gray matter associations of altered time awareness were assessed using voxel-based morphometry. All patient groups were significantly more prone to exhibit temporal awareness symptoms than healthy older individuals. Clinical syndromic signatures were identified. While patients with typical and logopenic Alzheimer's disease most frequently exhibited disturbed event ordering or interval estimation, patients with semantic dementia were most prone to temporal rigidity and clockwatching and those with behavioral variant frontotemporal dementia commonly exhibited all these temporal symptoms as well as a propensity to relive past events. On voxel-based morphometry, the tendency to relive past events was associated with relative preservation of a distributed left-sided temporo-parietal gray matter network including hippocampus. These findings reveal a rich and complex picture of disturbed temporal awareness in major dementia syndromes, with stratification of frontotemporal dementia syndromes from Alzheimer's disease. This is the first study to assess symptoms of altered temporal awareness across frontotemporal dementia syndromes and provides a motivation for future work directed to the development of validated clinical questionnaires, analysis of underlying neurobiological mechanisms and design of interventions

    Laughter as a paradigm of socio-emotional signal processing in dementia

    Get PDF
    Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer’s disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients’ brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer’s disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers (‘numerophilia’) in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p<0.05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease

    Altered phobic reactions in frontotemporal dementia: a behavioural and neuroanatomical analysis

    Get PDF
    Introduction: Abnormal behavioural and physiological reactivity to emotional stimuli is a hallmark of frontotemporal dementia (FTD), particularly the behavioural variant (bvFTD). As part of this repertoire, altered phobic responses have been reported in some patients with FTD but are poorly characterised. Methods: We collected data (based on caregiver reports) concerning the prevalence and nature of any behavioural changes related to specific phobias in a cohort of patients representing canonical syndromes of FTD and Alzheimer’s disease (AD), relative to healthy older controls. Neuroanatomical correlates of altered phobic reactivity were assessed using voxel-based morphometry. Results: 46 patients with bvFTD, 20 with semantic variant primary progressive aphasia, 25 with non-fluent variant primary progressive aphasia, 29 with AD and 55 healthy age-matched individuals participated. Changes in specific phobia were significantly more prevalent in the combined FTD cohort (15.4% of cases) and in the bvFTD group (17.4%) compared both to healthy controls (3.6%) and patients with AD (3.5%). Attenuation of phobic reactivity was reported for individuals in all participant groups, however new phobias developed only in the FTD cohort. Altered phobic reactivity was significantly associated with relative preservation of grey matter in left posterior middle temporal gyrus, right temporo-occipital junction and right anterior cingulate gyrus, brain regions previously implicated in contextual decoding, salience processing and reward valuation. Conclusion: Altered phobic reactivity is a relatively common issue in patients with FTD, particularly bvFTD. This novel paradigm of strong fear experience has broad implications: clinically, for diagnosis and patient well-being; and neurobiologically, for our understanding of the pathophysiology of aversive sensory signal processing in FTD and the neural mechanisms of fear more generally

    Health services research in the public healthcare system in Hong Kong: An analysis of over 1 million antihypertensive prescriptions between 2004-2007 as an example of the potential and pitfalls of using routinely collected electronic patient data

    Get PDF
    &lt;b&gt;Objectives&lt;/b&gt; Increasing use is being made of routinely collected electronic patient data in health services research. The aim of the present study was to evaluate the potential usefulness of a comprehensive database used routinely in the public healthcare system in Hong Kong, using antihypertensive drug prescriptions in primary care as an example.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; Data on antihypertensive drug prescriptions were retrieved from the electronic Clinical Management System (e-CMS) of all primary care clinics run by the Health Authority (HA) in the New Territory East (NTE) cluster of Hong Kong between January 2004 and June 2007. Information was also retrieved on patients’ demographic and socioeconomic characteristics, visit type (new or follow-up), and relevant diseases (International Classification of Primary Care, ICPC codes). &lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; 1,096,282 visit episodes were accessed, representing 93,450 patients. Patients’ demographic and socio-economic details were recorded in all cases. Prescription details for anti-hypertensive drugs were missing in only 18 patients (0.02%). However, ICPC-code was missing for 36,409 patients (39%). Significant independent predictors of whether disease codes were applied included patient age &gt; 70 years (OR 2.18), female gender (OR 1.20), district of residence (range of ORs in more rural districts; 0.32-0.41), type of clinic (OR in Family Medicine Specialist Clinics; 1.45) and type of visit (OR follow-up visit; 2.39). &lt;p&gt;&lt;/p&gt; In the 57,041 patients with an ICPC-code, uncomplicated hypertension (ICPC K86) was recorded in 45,859 patients (82.1%). The characteristics of these patients were very similar to those of the non-coded group, suggesting that most non-coded patients on antihypertensive drugs are likely to have uncomplicated hypertension. &lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusion&lt;/b&gt; The e-CMS database of the HA in Hong Kong varies in quality in terms of recorded information. Potential future health services research using demographic and prescription information is highly feasible but for disease-specific research dependant on ICPC codes some caution is warranted. In the case of uncomplicated hypertension, future research on pharmaco-epidemiology (such as prescription patterns) and clinical issues (such as side-effects of medications on metabolic parameters) seems feasible given the large size of the data set and the comparability of coded and non-coded patients

    Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia

    Get PDF
    Background: Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease
    corecore