22 research outputs found
Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition.
Neuregulin 1 (NRG1) is a secreted trophic factor that activates the postsynaptic erbB4 receptor tyrosine kinase. Both NRG1 and erbB4 have been repeatedly associated with schizophrenia, but their downstream targets are not well characterized. ErbB4 is highly abundant in interneurons, and NRG1-mediated erbB4 activation has been shown to modulate interneuron function, but the role for NRG1-erbB4 signaling in regulating interneuron dendritic growth is not well understood. Here we show that NRG1/erbB4 promote the growth of dendrites in mature interneurons through kalirin, a major dendritic Rac1-GEF. Recent studies have shown associations of the KALRN gene with schizophrenia. Our data point to an essential role of phosphorylation in kalirin-7's C terminus as the critical site for these effects. As reduced interneuron dendrite length occurs in schizophrenia, understanding how NRG1-erbB4 signaling modulates interneuron dendritic morphogenesis might shed light on disease-related alterations in cortical circuits
Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment
Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BP(ND))) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1âh supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BP(ND). At baseline, striatal D2/D3 BP(ND) did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BP(ND), whereas those in the education group did not. There were no changes in D2/D3 BP(ND) in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence
Cyanobacteria in ambient springs
Although neglected for a long time by freshwater-ecology research, springs are very important habitats for biodiversity conservation. They are multiple ecotones, and are characterized by a remarkable variety of environmental conditions (e.g., from highly-shaded to UV exposed, from permanent discharge to intermittent flow, from still water to strong currents, from extremely-soft to carbonate-precipitating water, etc.). Moreover, springs are often amongst the last high-integrity, oligotrophic freshwater habitats in densely populated areas. Because of the high quality of their waters, the main impact affecting springs is capturing and water diversion. Climate-change driven reduction in precipitations in many areas is likely to determine an aggravation of this impact. It is thus important to document the rich and peculiar biodiversity of springs, also to establish reference conditions for bioassessment methods. Especially in non-acidic springs with running water, and coarse lithic substrata, cyanobacteria are often one of the most taxa-rich and abundant groups of photoautotrophs. The relatively-scarce information available in the literature is mostly referred to similar habitats, and not to spring habitats in the narrower sense. Papers dealing with the cyanobacteria of ambient springheads (=eucrenal) worldwide are still very rare. These were reviewed separating ambient springs in temperate and warm climate, and with special attention to key species, to cyanobacterial strategies allowing survival in oligotrophic headwaters (e.g., nitrogen fixation, phosphatases, anti-UV compounds, etc.), and to distribution patterns. The review also hopes to bolster new interest and research on this topic, and suggests some promising research directions