72 research outputs found

    The role of HLA-G in human pregnancy

    Get PDF
    Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA. Numerous and highly sophisticated strategies for preventing mothers from rejecting their genetically different fetus(es) have now been identified. These involve production of novel soluble and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G saturate the maternal-fetal interface and circulate in mothers throughout pregnancy. Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when immune cells encounter HLA-G. Unequivocally demonstration of this concept requires experiments in animal models. Both the monkey and the baboon express molecules that are similar but not identical to HLA-G, and may comprise suitable animal models for establishing a central role for these proteins in pregnancy

    'Issues of equity are also issues of rights': Lessons from experiences in Southern Africa

    Get PDF
    BACKGROUND: Human rights approaches to health have been criticized as antithetical to equity, principally because they are seen to prioritise rights of individuals at the expense of the interests of groups, a core tenet of public health. The objective of this study was to identify how human rights approaches can promote health equity. METHODS: The Network on Equity in Health in Southern Africa undertook an exploration of three regional case studies – antiretroviral access, patient rights charters and civic organization for health. A combination of archival reviews and stakeholder interviews were complemented with a literature review to provide a theoretical framework for the empirical evidence. RESULTS: Critical success factors for equity are the importance of rights approaches addressing the full spectrum from civil and political, through to socio-economic rights, as well as the need to locate rights in a group context. Human rights approaches succeed in achieving health equity when coupled with community engagement in ways that reinforce community capacity, particularly when strengthening the collective agency of its most vulnerable groups. Additionally, human rights approaches provide opportunities for mobilising resources outside the health sector, and must aim to address the public-private divide at local, national and international levels. CONCLUSION: Where it is clear that rights approaches are predicated upon understanding the need to prioritize vulnerable groups and where the way rights are operationalised recognizes the role of agency on the part of those most affected in realising their socio-economic rights, human rights approaches appear to offer powerful tools to support social justice and health equity

    Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging

    Get PDF
    Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts

    Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy

    Get PDF
    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection - Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100% for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0% sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked. © 2016, The Author(s)
    • …
    corecore