54 research outputs found

    Caffeine does not cause override of the G2/M block induced by UVc or gamma radiation in normal human skin fibroblasts

    Get PDF
    Caffeine has for many years been known to be involved in the sensitization of DNA to damage. One potential mechanism recently put forward is an override of the G2/M block induced by irradiation, which would leave the cells less time for DNA repair prior to mitosis. However, different cell types display a variety of responses and no clear pathway has yet emerged, especially as little is known about the capacity of this agent to enhance DNA damage in normal, untransformed cells. Continuous exposure to commonly used caffeine concentrations (1–5 mM) inhibited the proliferation of normal human fibroblasts (NHFs) in a dose-dependent manner to up to 80% at 5 mM. Exposure of exponentially growing NHFs to UVc radiation (20 J m–2) or Ξ³ radiation (2.5–8 Gy) led to a 45–60% inhibition of proliferation and protracted accumulation of cells in the G2/M phase. Addition of 2 mM caffeine after irradiation induced slowing of the S phase passage, with a resultant delay in G2/M accumulation mimicking a G2/M block override. These results were confirmed by stathmokinetic studies, which showed delayed entry of the cells into mitosis in the presence of caffeine. Our data demonstrate that caffeine primarily inhibits replicative DNA synthesis and suggest that, at least in normal cells, caffeine potentiates the cytotoxicity of radiation by intervening in DNA repair rather than by overriding the G2/M block. Β© 2000 Cancer Research Campaig

    Stability of the thrombin-thrombomodulin complex on the surface of endothelial cells from human saphenous vein or from the cell line EA.hy 926

    Get PDF
    Protein C activation by alpha-thrombin on the surface of endothelial cells depends on an essential membrane-glycoprotein cofactor, thrombomodulin. In the present study we have monitored the activity of thrombin-thrombomodulin complexes on human saphenous-vein endothelial cells (HSVEC) or on the endothelial cell line EA.hy 926. Cell monolayers were exposed for 5 min to 8.5 nM human alpha-thrombin and then washed to remove unbound thrombin. The cells were then incubated at 37 degrees C for 5-180 min. At the end of the respective incubation periods, purified human protein C (120 nM) was added in order to assay the activity of the thrombin-thrombomodulin complexes present on the cell surface. HSVEC pre-exposed to thrombin retained their full capacity to promote protein C activation up to 90 min after free thrombin was removed. This capacity then decreased slowly to reach 56% of control value after 180 min of incubation. Original activity was 3.8 +/- 0.9 pmol of activated protein C formed/min per ml per 10(6) cells (mean +/- S.E.M., n = 5). The capacity of protein C activation of EA.hy 926 cells remained constant for 120 min after free thrombin was removed, then decreased to 76% of control after 180 min. Original activity was 2.0 +/- 0.4 pmol of activated protein C formed/min per ml per 10(6) cells (mean +/- S.E.M., n = 3). Similar results were obtained with cells fixed with 3% paraformaldehyde. However, during the 5-180 min incubation period, non-fixed cells of both types were capable of significantly internalizing fluorescent acetylated low-density lipoprotein. In the experimental protocol used here, an eventual inhibition of thrombin internalization by protein C can be excluded, as protein C is only added at the end of the incubation period. We conclude that there is no evidence of rapid internalization of thrombin-thrombomodulin complexes on HSVEC or the EA.hy 926 cell line, as assessed by the ability of membrane-bound thrombin to activate protein C

    The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis

    Get PDF
    The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV), cure rates are = 82%) when = 4 miRNAs were expressed. Moreover, the 'MELmiR-7' panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood=11, p < 0.001). This panel was found to be superior to currently used serological markers for melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa-c/IV M1a-b) to detect relapse following surgical or adjuvant treatment. (C) 2015 The Authors. Published by Elsevier B. V

    The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network

    Get PDF
    Background: Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers. Methods and Findings: Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientΕ› delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment. Conclusion: The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects

    Shedding Light on The Role of Keratinocyte-Derived Extracellular Vesicles on Skin-Homing Cells

    Get PDF
    Extracellular vesicles (EVs) are secretory lipid membranes with the ability to regulate cellular functions by exchanging biological components between different cells. Resident skin cells such as keratinocytes, fibroblasts, melanocytes, and inflammatory cells can secrete different types of EVs depending on their biological state. These vesicles can influence the physiological properties and pathological processes of skin, such as pigmentation, cutaneous immunity, and wound healing. Since keratinocytes constitute the majority of skin cells, secreted EVs from these cells may alter the pathophysiological behavior of other skin cells. This paper reviews the contents of keratinocyte-derived EVs and their impact on fibroblasts, melanocytes, and immune cells to provide an insight for better understanding of the pathophysiological mechanisms of skin disorders and their use in related therapeutic approaches

    The putative Tumor Suppressor VILIP-1 Counteracts Epidermal Growth Factor-Induced Epidermal-Mesenchymal Transition in Squamous Carcinoma Cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) is a crucial step for the acquisition of invasive properties of carcinoma cells during tumor progression. Epidermal growth factor (EGF)-treatment of squamous cell carcinoma (SCC) cells provokes changes in the expression of lineage markers, morphological changes, and a higher invasive and metastatic potential. Here we show that chronic stimulation with EGF induces EMT in skin-derived SCC cell lines along with the down-regulation of the epithelial marker E-cadherin, and of the putative tumor suppressor VILIP-1 (visinin-like protein 1). In esophageal squamous cell carcinoma and non-small cell lung carcinoma the loss of VILIP-1 correlates with clinicopathological features related to enhanced invasiveness. VILIP-1 has previously been shown to suppress tumor cell invasion via enhancing cAMP-signaling in a murine SCC model. In mouse skin SCC cell lines the VILIP-1-negative tumor cells have low cAMP levels, whereas VILIP-1-positive SCCs possess high cAMP levels, but low invasive properties. We show that in VILIP-1-negative SCCs, Snail1, a transcriptional repressor involved in EMT, is up-regulated. Snail1 expression is reduced by ectopic VILIP-1-expression in VILIP-1-negative SCC cells, and application of the general adenylyl cyclase inhibitor 2β€²,3β€²-dideoxyadenosine attenuated this effect. Conversely, EGF-stimulation of VILIP-1-positive SCC cells leads to the down-regulation of VILIP-1 and the induction of Snail1 expression. The induction of Snail is inhibited by elevated cAMP levels. The role of cAMP in EMT was further highlighted by its suppressive effect on the EGF-induced enhancement of migration in VILIP-1-positive SCC cells. These findings indicate that VILIP-1 is involved in EMT of SCC by regulating the transcription factor Snail1 in a cAMP-dependent manner
    • …
    corecore