23 research outputs found

    HIC2 regulates isoform switching during maturation of the cardiovascular system.

    Get PDF
    Physiological changes during embryonic development are associated with changes in the isoform expression of both myocyte sarcomeric proteins and of erythrocyte haemoglobins. Cell type-specific isoform expression of these genes also occurs. Although these changes appear to be coordinated, it is unclear how changes in these disparate cell types may be linked. The transcription factor Hic2 is required for normal cardiac development and the mutant is embryonic lethal. Hic2 embryos exhibit precocious expression of the definitive-lineage haemoglobin Hbb-bt in circulating primitive erythrocytes and of foetal isoforms of cardiomyocyte genes (creatine kinase, Ckm, and eukaryotic elongation factor Eef1a2) as well as ectopic cardiac expression of fast-twitch skeletal muscle troponin isoforms. We propose that HIC2 regulates a switching event within both the contractile machinery of cardiomyocytes and the oxygen carrying systems during the developmental period where demands on cardiac loading change rapidly

    KIAA0101 Is Overexpressed, and Promotes Growth and Invasion in Adrenal Cancer

    Get PDF
    Background: KIAA0101 is a proliferating cell nuclear antigen-associated factor that is overexpressed in some human malignancies. Adrenocortical neoplasm is one of the most common human neoplasms for which the molecular causes are poorly understood. Moreover, it is difficult to distinguish between localized benign and malignant adrenocortical tumors. For these reasons, we studied the expression, function and possible mechanism of dysregulation of KIAA0101 in human adrenocortical neoplasm. Methodology/Principal Findings: KIAA0101 mRNA and protein expression levels were determined in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 adrenocortical carcinoma (ACC). SiRNA knockdown was used to determine the functional role of KIAA0101 on cell proliferation, cell cycle, apoptosis, soft agar anchorage independent growth and invasion in the ACC cell line, NCI-H295R. In addition, we explored the mechanism of KIAA0101 dysregulation by examining the mutational status. KIAA0101 mRNA (9.7 fold) and protein expression were significantly higher in ACC (p,0.0001). KIAA0101 had sparse protein expression in only a few normal adrenal cortex samples, which was confined to adrenocortical progenitor cells. KIAA0101 expression levels were 84 % accurate for distinguishing between ACC and normal and benign adrenocortical tumor samples. Knockdown of KIAA0101 gene expression significantly decreased anchorage independent growth by 80 % and invasion by 60 % (p = 0.001; p = 0.006). W

    Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1

    Get PDF
    The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1

    Historical Archaeologies of the American West

    Full text link

    HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region

    No full text
    Rationale: 22q11 deletion syndrome arises from recombination between low-copy repeats on chromosome 22. Typical deletions result in hemizygosity for TBX1 associated with congenital cardiovascular disease. Deletions distal to the typically deleted region result in a similar cardiac phenotype but lack in extracardiac features of the syndrome, suggesting that a second haploinsufficient gene maps to this interval. Objective: The transcription factor HIC2 is lost in most distal deletions, as well as in a minority of typical deletions. We used mouse models to test the hypothesis that HIC2 hemizygosity causes congenital heart disease. Methods and Results: We created a genetrap mouse allele of Hic2. The genetrap reporter was expressed in the heart throughout the key stages of cardiac morphogenesis. Homozygosity for the genetrap allele was embryonic lethal before embryonic day E10.5, whereas the heterozygous condition exhibited a partially penetrant late lethality. One third of heterozygous embryos had a cardiac phenotype. MRI demonstrated a ventricular septal defect with over-riding aorta. Conditional targeting indicated a requirement for Hic2 within the Nkx2.5+ and Mesp1+ cardiovascular progenitor lineages. Microarray analysis revealed increased expression of Bmp10. Conclusions: Our results demonstrate a novel role for Hic2 in cardiac development. Hic2 is the first gene within the distal 22q11 interval to have a demonstrated haploinsufficient cardiac phenotype in mice. Together our data suggest that HIC2 haploinsufficiency likely contributes to the cardiac defects seen in distal 22q11 deletion syndrome.</p

    HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region.

    No full text
    RATIONALE: 22q11 deletion syndrome arises from recombination between low-copy repeats on chromosome 22. Typical deletions result in hemizygosity for TBX1 associated with congenital cardiovascular disease. Deletions distal to the typically deleted region result in a similar cardiac phenotype but lack in extracardiac features of the syndrome, suggesting that a second haploinsufficient gene maps to this interval. OBJECTIVE: The transcription factor HIC2 is lost in most distal deletions, as well as in a minority of typical deletions. We used mouse models to test the hypothesis that HIC2 hemizygosity causes congenital heart disease. METHODS AND RESULTS: We created a genetrap mouse allele of Hic2. The genetrap reporter was expressed in the heart throughout the key stages of cardiac morphogenesis. Homozygosity for the genetrap allele was embryonic lethal before embryonic day E10.5, whereas the heterozygous condition exhibited a partially penetrant late lethality. One third of heterozygous embryos had a cardiac phenotype. MRI demonstrated a ventricular septal defect with over-riding aorta. Conditional targeting indicated a requirement for Hic2 within the Nkx2.5+ and Mesp1+ cardiovascular progenitor lineages. Microarray analysis revealed increased expression of Bmp10. CONCLUSIONS: Our results demonstrate a novel role for Hic2 in cardiac development. Hic2 is the first gene within the distal 22q11 interval to have a demonstrated haploinsufficient cardiac phenotype in mice. Together our data suggest that HIC2 haploinsufficiency likely contributes to the cardiac defects seen in distal 22q11 deletion syndrome

    Noncoding deletions reveal a gene that is critical for intestinal function

    No full text
    Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes
    corecore