12 research outputs found

    The Distributed Model Intercomparison Project- Phase 2: Experiment Design and Summary Results of the Western Basin Experiments

    Get PDF
    The Office of Hydrologic Development (OHD) of the U.S. National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) conducted the two phases of the Distributed Model Intercomparison Project (DMIP) as cost-effective studies to guide the transition to spatially distributed hydrologic modeling for operational forecasting at NWS River Forecast Centers (RFCs). Phase 2 of the Distributed Model lntercomparison Project (DMIP 2) was formulated primarily as a mechanism to help guide the U.S. NWS as it expands its use of spatially distributed watershed models for operational river, flash flood, and water resources forecasting. The overall purpose of DMIP 2 was to test many distributed models forced by high quality operational data with a view towards meeting NWS operational forecasting needs. At the same time, DMIP 2 was formulated as an experiment that could be leveraged by the broader scientific community as a platform for the testing, evaluation, and improvement of distributed models. DMIP 2 contained experiments in two regions: in the DMIP 1 Oklahoma basins, and second, in two basins in the Sierra Nevada Mountains in the western USA. This paper presents the overview and results of the DMIP 2 experiments conducted for the two Sierra Nevada basins. Simulations from five independent groups from France, Italy, Spain and the USA were analyzed. Experiments included comparison of lumped and distributed model streamflow simulations generated with uncalibrated and calibrated parameters, and simulations of snow water equivalent (SWE) at interior locations. As in other phases of DMIP, the participant simulations were evaluated against observed hourly streamflow and SWE data and compared with simulations provided by the NWS operational lumped model. A wide range of statistical measures are used to evaluate model performance on a run-period and event basis. Differences between uncalibrated and calibrated model simulations are assessed. Results indicate that in the two study basins, no single model performed best,in all cases. In addition, no distributed model was able to consistently outperform the lumped Model benchmark. However, one or more distributed models were able to outperform the lumped model benchmark in many of the analyses. Several calibrated distributed models achieved higher correlation and lower bias than the calibrated lumped benchmark in the calibration, validation, and combined periods. Evaluating a number of specific precipitation-runoff events, one calibrated distributed model was able to perform at a level equal to or better than the calibrated lumped model benchmark in terms of event-averaged peak and runoff volume error. However, three distributed models were able to provide improved peak timing compared to the lumped benchmark. Taken together, calibrated distributed models provided specific improvements over the lumped benchmark in 24% of the model-basin pairs for peak flow, 12% of the model-basin pairs for event runoff volume, and 41% of the model-basin pairs for peak timing. Model calibration improved the performance statistics of nearly all models (lumped and distributed). Analysis of several precipitation/runoff events indicates that distributed models may more accurately model the dynamics of the rain/snow line (and resulting hydrologic conditions) compared to the lumped benchmark model. Analysis of SWE simulations shows that better results were achieved at higher elevation observation sites. Although the performance of distributed models was mixed compared to the lumped benchmark, all calibrated models performed well compared to results in the DMIP 2 Oklahoma basins in terms of run period correlation and %Bias, and event-averaged peak and runoff error. This finding is noteworthy considering that these Sierra Nevada basins have complications such as orographically-enhanced precipitation, snow accumulation and melt, rain on snow events, and highly variable topography. Looking at these findings and those from the previous DMIP experiments, it is clear that at this point in their evolution, distributed models have the potential to provide valuable information on specific flood events that could complement lumped model simulations. Published by Elsevier B.V.Smith, M.; Koren, V.; Zhang, Z.; Moreda, F.; Cui, Z.; Cosgrove, B.; Mizukami, N.... (2013). The Distributed Model Intercomparison Project- Phase 2: Experiment Design and Summary Results of the Western Basin Experiments. Journal of Hydrology. 507:300-329. doi:10.1016/j.jhydrol.2013.08.04030032950

    First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475

    No full text
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of data were collected, first with the 19-element 43GHz array (3458hours) and then with the 90-element 95GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ~1000deg^2. This paper reports initial results from the 43GHz receiver which has an array sensitivity to CMB fluctuations of 69uK sqrt(s). The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB and EB power spectra in the multipole range ell=25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3sigma significance, the E-mode spectrum is consistent with the LCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r=0.

    Within-person associations of young adolescents’ physical activity across five primary locations: is there evidence of cross-location compensation?

    Get PDF
    Abstract Background Youth are active in multiple locations, but it is unknown whether more physical activity in one location is associated with less in other locations. This cross-sectional study examines whether on days with more physical activity in a given location, relative to their typical activity in that location, youth had less activity in other locations (i.e., within-person associations/compensation). Methods Participants were 528 adolescents, ages 12 to 16 (M = 14.12, SD = 1.44, 50% boys, 70% White non-Hispanic). Accelerometer and Global Positioning System devices were used to measure the proportion of time spent in moderate-to-vigorous physical activity (MVPA) in five locations: home, home neighborhood, school, school neighborhood, and other locations. Mixed-effects regression was used to examine within-person associations of MVPA across locations and moderators of these associations. Results Two of ten within-participant associations tested indicated small amounts of compensation, and one association indicated generalization across locations. Higher at-school MVPA (relative to the participant’s average) was related to less at-home MVPA and other-location MVPA (Bs = −0.06 min/day). Higher home-neighborhood MVPA (relative to the participant’s average) was related to more at-home MVPA (B = 0.07 min/day). Some models showed that compensation was more likely (or generalization less likely) in boys and non-whites or Hispanic youth. Conclusions Consistent evidence of compensation across locations was not observed. A small amount of compensation was observed for school physical activity, suggesting that adolescents partially compensated for high amounts of school activity by being less active in other locations. Conversely, home-neighborhood physical activity appeared to carry over into the home, indicating a generalization effect. Overall these findings suggest that increasing physical activity in one location is unlikely to result in meaningful decreases in other locations. Supporting physical activity across multiple locations is critical to increasing overall physical activity in youth
    corecore