113 research outputs found

    Polymerase II Promoter Strength Determines Efficacy of microRNA Adapted shRNAs

    Get PDF
    Since the discovery of RNAi and microRNAs more than 10 years ago, much research has focused on the development of systems that usurp microRNA pathways to downregulate gene expression in mammalian cells. One of these systems makes use of endogenous microRNA pri-cursors that are expressed from polymerase II promoters where the mature microRNA sequence is replaced by gene specific duplexes that guide RNAi (shRNA-miRs). Although shRNA-miRs are effective in directing target mRNA knockdown and hence reducing protein expression in many cell types, variability of RNAi efficacy in cell lines has been an issue. Here we show that the choice of the polymerase II promoter used to drive shRNA expression is of critical importance to allow effective mRNA target knockdown. We tested the abundance of shRNA-miRs expressed from five different polymerase II promoters in 6 human cell lines and measured their ability to drive target knockdown. We observed a clear positive correlation between promoter strength, siRNA expression levels, and protein target knockdown. Differences in RNAi from the shRNA-miRs expressed from the various promoters were particularly pronounced in immune cells. Our findings have direct implications for the design of shRNA-directed RNAi experiments and the preferred RNAi system to use for each cell type

    Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL

    Get PDF
    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (KrΓΌppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes

    Modulation of phosphofructokinase (PFK) from Setaria cervi, a bovine filarial parasite, by different effectors and its interaction with some antifilarials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphofructokinase (ATP: D-fructose-6-phosphate-1-phosphotransferase, EC 2.7.1.11, PFK) is of primary importance in the regulation of glycolytic flux. This enzyme has been extensively studied from mammalian sources but relatively less attention has been paid towards its characterization from filarial parasites. Furthermore, the information about the response of filarial PFK towards the anthelmintics/antifilarial compounds is lacking. In view of these facts, PFK from <it>Setaria cervi</it>, a bovine filarial parasite having similarity with that of human filarial worms, was isolated, purified and characterized.</p> <p>Results</p> <p>The <it>S. cervi </it>PFK was cytosolic in nature. The adult parasites (both female and male) contained more enzyme activity than the microfilarial (Mf) stage of <it>S. cervi</it>, which exhibited only 20% of total activity. The <it>S. cervi </it>PFK could be modulated by different nucleotides and the response of enzyme to these nucleotides was dependent on the concentrations of substrates (F-6-P and ATP). The enzyme possessed wide specificity towards utilization of the nucleotides as phosphate group donors. <it>S. cervi </it>PFK showed the presence of thiol group(s) at the active site of the enzyme, which could be protected from inhibitory action of para-chloromercuribenzoate (p-CMB) up to about 76% by pretreatment with cysteine or Ξ²-ME. The sensitivity of PFK from <it>S. cervi </it>towards antifilarials/anthelmintics was comparatively higher than that of mammalian PFK. With suramin, the Ki value for rat liver PFK was 40 times higher than PFK from <it>S. cervi</it>.</p> <p>Conclusions</p> <p>The results indicate that the activity of filarial PFK may be modified by different effectors (such as nucleotides, thiol group reactants and anthelmintics) in filarial worms depending on the presence of varying concentrations of substrates (F-6-P and ATP) in the cellular milieu. It may possess thiol group at its active site responsible for catalysis. Relatively, 40 times higher sensitivity of filarial PFK towards suramin as compared to the analogous enzyme from the mammalian system indicates that this enzyme could be exploited as a potential chemotherapeutic target against filariasis.</p

    Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus)

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching) of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder

    Use of MicroRNA Let-7 to Control the Replication Specificity of Oncolytic Adenovirus in Hepatocellular Carcinoma Cells

    Get PDF
    Highly selective therapy for hepatocellular carcinoma (HCC) remains an unmet medical need. In present study, we found that the tumor suppressor microRNA, let-7 was significantly downregulated in a proportion of primary HCC tissues (12 of 33, 36.4%) and HCC cell lines. In line with this finding, we have engineered a chimeric Ad5/11 fiber oncolytic adenovirus, SG7011let7T, by introducing eight copies of let-7 target sites (let7T) into the 3β€² untranslated region of E1A, a key gene associated with adenoviral replication. The results showed that the E1A expression (both RNA and protein levels) of the SG7011let7T was tightly regulated according to the endogenous expression level of the let-7. As contrasted with the wild-type adenovirus and the control virus, the replication of SG7011let7T was distinctly inhibited in normal liver cells lines (i.e. L-02 and WRL-68) expressing high level of let-7 (>300 folds), whereas was almost not impaired in HCC cells (i.e. Hep3B and PLC/PRF/5) with low level of let-7. Consequently, the cytotoxicity of SG7011let7T to normal liver cells was successfully decreased while was almost not attenuated in HCC cells in vitro. The antitumor ability of SG7011let7T in vivo was maintained in mice with Hep3B xenograft tumor, whereas was greatly decreased against the SMMC-7721 xenograft tumor expressing a high level of let-7 similar with L-02 when compared to the wild-type adenovirus. These results suggested that SG7011let7T may be a promising anticancer agent or vector to mediate the expression of therapeutic gene, broadly applicable in the treatment for HCC and other cancers where the let-7 gene is downregulated

    Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities

    Get PDF
    BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity

    Cyclic Vomiting Syndrome in 41 adults: the illness, the patients, and problems of management

    Get PDF
    BACKGROUND: Cyclic Vomiting Syndrome (CVS) is a disorder characterized by recurrent, stereotypic episodes of incapacitating nausea, vomiting and other symptoms, separated by intervals of comparative wellness. This report describes the clinical features, co-morbidities and problems encountered in management of 41 adult patients who met the diagnostic criteria for CVS. METHODS: This is a retrospective study of adults with CVS seen between 1994 and 2003. Follow-up data were obtained by mailed questionnaires. RESULTS: Age of onset ranged from 2 to 49 years. The duration of CVS at the time of consultation ranged from less than 1 year to 49 years. CVS episodes were stereotypic in respect of their hours of onset, symptomatology and length. Ninety-three percent of patients had recognizable prodromes. Half of the patients experienced a constellation of symptoms consisting of CVS episodes, migraine diathesis, inter-episodic dyspeptic nausea and a history of panic attacks. Deterioration in the course of CVS is indicated by coalescence of episodes in time. The prognosis of CVS is favorable in the majority of patients. CONCLUSION: CVS is a disabling disorder affecting adults as well as children. Because its occurrence in adults is little known, patients experience delayed or mis-diagnosis and ineffectual, sometimes inappropriately invasive management

    The Caenorhabditis elegans HEN1 Ortholog, HENN-1, Methylates and Stabilizes Select Subclasses of Germline Small RNAs

    Get PDF
    Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2β€²-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family
    • …
    corecore