7 research outputs found

    A proposed testbed for detector tomography

    Full text link
    Measurement is the only part of a general quantum system that has yet to be characterized experimentally in a complete manner. Detector tomography provides a procedure for doing just this; an arbitrary measurement device can be fully characterized, and thus calibrated, in a systematic way without access to its components or its design. The result is a reconstructed POVM containing the measurement operators associated with each measurement outcome. We consider two detectors, a single-photon detector and a photon-number counter, and propose an easily realized experimental apparatus to perform detector tomography on them. We also present a method of visualizing the resulting measurement operators.Comment: 9 pages, 4 figure

    Quantum nature of laser light

    Get PDF
    All compositions of a mixed-state density operator are equivalent for the prediction of the probabilities of future outcomes of measurements. For retrodiction, however, this is not the case. The retrodictive formalism of quantum mechanics provides a criterion for deciding that some compositions are fictional. Fictional compositions do not contain preparation device operators, that is operators corresponding to states that could have been prepared. We apply this to Molmer's controversial conjecture that optical coherences in laser light are a fiction and find agreement with his conjecture. We generalise Molmer's derivation of the interference between two lasers to avoid the use of any fictional states. We also examine another possible method for discriminating between conerent states and photon number states in laser light and find that it does not work, with the equivalence for prediction saved by entanglement

    Advances in quantum metrology

    Get PDF
    The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections

    Experimental Quantum Detector Tomography

    No full text
    We present the first quantum tomography of a detector, using as examples an avalanche photodiode and a photon-number resolving detector. The resulting POVM set agrees well with one derived from a model of the detector. © 2008 Optical Society of America

    Full characterization of quantum optical detectors

    No full text
    Full characterization of detectors in the quantum regime is presented. We determine the POVM elements of a photon-number-resolving detector. A method for precise calibration of detector efficiency is demonstrated
    corecore