36 research outputs found

    Different rates of cognitive decline in autosomal dominant and late-onset Alzheimer disease

    Get PDF
    As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview

    Get PDF
    PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding

    Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study

    Get PDF
    Background: Models of Alzheimer's disease propose a sequence of amyloid β (Aβ) accumulation, hypometabolism, and structural decline that precedes the onset of clinical dementia. These pathological features evolve both temporally and spatially in the brain. In this study, we aimed to characterise where in the brain and when in the course of the disease neuroimaging biomarkers become abnormal. Methods: Between Jan 1, 2009, and Dec 31, 2015, we analysed data from mutation non-carriers, asymptomatic carriers, and symptomatic carriers from families carrying gene mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein (APP) enrolled in the Dominantly Inherited Alzheimer's Network. We analysed 11C-Pittsburgh Compound B (11C-PiB) PET, 18F-Fluorodeoxyglucose (18F-FDG) PET, and structural MRI data using regions of interest to assess change throughout the brain. We estimated rates of biomarker change as a function of estimated years to symptom onset at baseline using linear mixed-effects models and determined the earliest point at which biomarker trajectories differed between mutation carriers and non-carriers. This study is registered at ClinicalTrials.gov (number NCT00869817) Findings: 11C-PiB PET was available for 346 individuals (162 with longitudinal imaging), 18F-FDG PET was available for 352 individuals (175 with longitudinal imaging), and MRI data were available for 377 individuals (201 with longitudinal imaging). We found a sequence to pathological changes, with rates of Aβ deposition in mutation carriers being significantly different from those in non-carriers first (across regions that showed a significant difference, at a mean of 18·9 years [SD 3·3] before expected onset), followed by hypometabolism (14·1 years [5·1] before expected onset), and lastly structural decline (4·7 years [4·2] before expected onset). This biomarker ordering was preserved in most, but not all, regions. The temporal emergence within a biomarker varied across the brain, with the precuneus being the first cortical region for each method to show divergence between groups (22·2 years before expected onset for Aβ accumulation, 18·8 years before expected onset for hypometabolism, and 13·0 years before expected onset for cortical thinning). Interpretation: Mutation carriers had elevations in Aβ deposition, reduced glucose metabolism, and cortical thinning compared with non-carriers which preceded the expected onset of dementia. Accrual of these pathologies varied throughout the brain, suggesting differential regional and temporal vulnerabilities to Aβ metabolic decline, and structural atrophy, which should be taken into account when using biomarkers in a clinical setting as well as designing and evaluating clinical trials. Funding: US National Institutes of Health, the German Center for Neurodegenerative Diseases, and the Medical Research Council Dementias Platform UK
    corecore