372 research outputs found

    Repeated post-exercise administration with a mixture of leucine and glucose alters the plasma amino acid profile in Standardbred trotters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The branched chain amino acid leucine is a potent stimulator of insulin secretion. Used in combination with glucose it can increase the insulin response and the post exercise re-synthesis of glycogen in man. Decreased plasma amino acid concentrations have been reported after intravenous or per oral administration of leucine in man as well as after a single per oral dose in horses. In man, a negative correlation between the insulin response and the concentrations of isoleucine, valine and methionine have been shown but results from horses are lacking. This study aims to determine the effect of repeated per oral administration with a mixture of glucose and leucine on the free amino acid profile and the insulin response in horses after glycogen-depleting exercise.</p> <p>Methods</p> <p>In a crossover design, after a glycogen depleting exercise, twelve Standardbred trotters received either repeated oral boluses of glucose, 1 g/kg body weight (BW) at 0, 2 and 4 h with addition of leucine 0.1 g/kg BW at 0 and 4 h (GLU+LEU), or repeated boluses of water at 0, 2 and 4 h (CON). Blood samples for analysis of glucose, insulin and amino acid concentrations were collected prior to exercise and over a 6 h post-exercise period. A mixed model approach was used for the statistical analyses.</p> <p>Results</p> <p>Plasma leucine, isoleucine, valine, tyrosine and phenylalanine concentrations increased after exercise. Post-exercise serum glucose and plasma insulin response were significantly higher in the GLU+LEU treatment compared to the CON treatment. Plasma leucine concentrations increased after supplementation. During the post-exercise period isoleucine, valine and methionine concentrations decreased in both treatments but were significantly lower in the GLU+LEU treatment. There was no correlation between the insulin response and the response in plasma leucine, isoleucine, valine and methionine.</p> <p>Conclusions</p> <p>Repeated post-exercise administration with a mixture of leucine and glucose caused a marked insulin response and altered the plasma amino acid profile in horses in a similar manner as described in man. However, the decreases seen in plasma amino acids in horses seem to be related more to an effect of leucine and not to the insulin response as seen in man.</p

    Day-to-Day Test–Retest Variability of CBF, CMRO2, and OEF Measurements Using Dynamic 15O PET Studies

    Get PDF
    Contains fulltext : 169592.pdf (publisher's version ) (Open Access)PURPOSE: We assessed test-retest variability of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)), and oxygen extraction fraction (OEF) measurements derived from dynamic (15)O positron emission tomography (PET) scans. PROCEDURES: In seven healthy volunteers, complete test-retest (15)O PET studies were obtained; test-retest variability and left-to-right ratios of CBF, CBV, OEF, and CMRO(2) in arterial flow territories were calculated. RESULTS: Whole-brain test-retest coefficients of variation for CBF, CBV, CMRO(2), and OEF were 8.8%, 13.8%, 5.3%, and 9.3%, respectively. Test-retest variability of CBV left-to-right ratios was <7.4% across all territories. Corresponding values for CBF, CMRO(2), and OEF were better, i.e., <4.5%, <4.0%, and <1.4%, respectively. CONCLUSIONS: The test-retest variability of CMRO(2) measurements derived from dynamic (15)O PET scans is comparable to within-session test-retest variability derived from steady-state (15)O PET scans. Excellent regional test-retest variability was observed for CBF, CMRO(2), and OEF. Variability of absolute CBF and OEF measurements is probably affected by physiological day-to-day variability of CBF

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Measuring 129Xe transfer across the blood‐brain barrier using MR spectroscopy

    Get PDF
    Purpose This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129Xe dissolved in cerebral blood under exchange with depolarized 129Xe dissolved in gray matter under equilibrium of concentration. Theory and Methods Time‐resolved MR spectra of hyperpolarized 129Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129Xe T1 dependence upon blood oxygenation was applied. 129Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. Results For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. Conclusion In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129Xe from cerebral blood to gray matter in the human brain
    corecore