13 research outputs found

    Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity

    Get PDF
    The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience

    Abnormal air righting behaviour in the spontaneously hypertensive rat model of ADHD

    No full text
    The spontaneously hypertensive rat (SHR) is the most commonly used model of attention-deficit hyperactivity disorder (ADHD), displaying the main symptoms of the disorder which are responsive to psychostimulant treatments. Research to date has focused on behavioural tests investigating functioning of the striatum or prefrontal cortex in these rats. However, there is now evidence that the superior colliculus, a structure associated with head and eye movements, may also be dysfunctional in ADHD. Therefore, the aim of this study was to investigate whether the SHR demonstrated impairment in collicular-dependent behaviour. To this end, we examined air righting behaviour, which has previously been shown to be modulated in a height-dependent manner reliant on a functional superior colliculus. We assessed SHR, Wistar Kyotos and Wistars on static righting and air righting at 50 and 10 cm drop heights. There were no differences in static righting, indicating that there were no gross motor differences that would confound air righting. Qualitative analysis of video footage of the righting did not reveal any changes previously associated with collicular damage, unique to the SHR. However, the SHR did show impairment in height-dependent modulation of righting in contrast to both control strains, such that the SHR failed to modulate righting latency according to drop height. This failure is indicative of collicular abnormality. Given that many rodent tests of attentional mechanisms involve head and eye orienting, which are heavily dependent on the colliculus, a collicular dysfunction has strong implications for the type of attentional task used in this strain

    Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour

    No full text
    The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours

    The Status of Solar Thermal Electric Technology

    No full text
    corecore