601 research outputs found

    Regulation of Axonal Transport by Protein Kinases

    Get PDF
    The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets

    Modifying axonal transport as a therapeutic strategy for Amyotrophic Lateral Sclerosis

    Get PDF
    Deficits in retrograde axonal transport have been described at a presymptomatic stage in the SOD1G93A mouse model of ALS. The early appearance of transport defects suggests that they may play an important role in disease pathogenesis. However, the causative role of axonal transport deficits in ALS motor neuron degeneration has not yet been demonstrated directly. The goal of my PhD project was to identify pharmacological enhancers of retrograde axonal transport that could be used to prove conclusively whether axonal transport defects play a significant role in ALS pathogenesis. To this aim, I developed and performed a microscopy-based screen for the identification of pharmacological enhancers of retrograde axonal transport in motor neurons. I was able to demonstrate that the accumulation of α-p75NTR and HCT in the cell body of mouse ES-derived motor neurons acts as a sensitive read-out of retrograde axonal transport efficiency and using this assay, I identified and validated two compounds (A1 and E4) that were able to accelerate retrograde axonal transport in motor neurons. Compound A1 was revealed to be an inhibitor of p38 MAPK. Inhibition of p38 MAPK was found to correct deficits in retrograde axonal transport in SOD1G93A motor neurons both in vitro and in vivo. Using genetic and pharmacological approaches, I was able to demonstrate that p38 MAPKα is responsible for the transport deficits observed. Compound E4 was revealed to be an inhibitor of the IGF1 receptor (IGF1R). It was found to accelerate retrograde axonal transport in both wild type and SOD1G93A motor neurons, but had no effect on anterograde transport speeds. In conclusion, this thesis work has identified inhibitors of p38 MAPK and IGF1R as novel modifiers of retrograde axonal transport and demonstrated that inhibitors of p38 MAPKα can be used to determine the role of axonal transport defects in ALS pathogenesis

    IGF1R regulates retrograde axonal transport of signalling endosomes in motor neurons

    Get PDF
    Signalling endosomes are essential for trafficking of activated ligand–receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin‐like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS

    In vivo imaging of axonal transport in murine motor and sensory neurons

    Get PDF
    BACKGROUND: Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neurological disease is therefore crucial to improve our understanding of disease pathogenesis and for the identification of novel therapeutics. NEW METHOD: Here, we describe a method for the in vivo imaging of axonal transport of signalling endosomes in the sciatic nerve of live, anaesthetised mice. RESULTS: This method allows the multiparametric, quantitative analysis of in vivo axonal transport in motor and sensory neurons of adult mice in control conditions and during disease progression. COMPARISON WITH EXISTING METHODS: Previous in vivo imaging of the axonal transport of signalling endosomes has been limited to studies in nerve explant preparations or non-invasive approaches using magnetic resonance imaging; techniques that are hampered by major drawbacks such as tissue damage and low temporal and spatial resolution. This new method allows live imaging of the axonal transport of single endosomes in the sciatic nerve in situ and a more sensitive analysis of axonal transport kinetics than previous approaches. CONCLUSIONS: The method described in this paper allows an in-depth analysis of the characteristics of axonal transport in both motor and sensory neurons in vivo. It enables the detailed study of alterations in axonal transport in rodent models of neurological diseases and can be used to identify novel pharmacological modifiers of axonal transport

    Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the degeneration of upper and lower motor neurons. Defects in axonal transport have been observed pre-symptomatically in the SOD1G93A mouse model of ALS, and have been proposed to play a role in motor neuron degeneration as well as in other pathologies of the nervous system, such as Alzheimer’s disease and hereditary neuropathies. In this study, we screen a library of smallmolecule kinase inhibitors towards the identification of pharmacological enhancers of the axonal retrograde transport of signalling endosomes, which might be used to normalise the rate of this process in diseased neurons. Inhibitors of p38 mitogen-activated protein kinases (p38 MAPK) were identified in this screen and were found to correct deficits in axonal retrograde transport of signalling endosomes in cultured primary SOD1G93A motor neurons. In vitro knockdown experiments revealed that the alpha isoform of p38 MAPK (p38 MAPKα) was the sole isoform responsible for SOD1G93A-induced transport deficits. Furthermore, we found that acute treatment with p38 MAPKα inhibitors restored the physiological rate of axonal retrograde transport in vivo in early symptomatic SOD1G93A mice. Our findings demonstrate the pathogenic effect of p38 MAPKα on axonal retrograde transport and identify a potential therapeutic strategy for ALS

    Exploring rationales for branding a university: Should we be seeking to measure branding in UK universities?

    Get PDF
    Although branding is now widespread among UK universities, the application of branding principles in the higher education sector is comparatively recent and may be controversial for internal audiences who question its suitability and efficiency. This paper seeks to investigate how and whether the effectiveness of branding activity in the higher education sector should be evaluated and measured, through exploratory interviews with those who often drive it; UK University marketing professionals. Conclusions suggest that university branding is inherently complex and therefore application of commercial approaches may be over simplistic. Whilst marketing professionals discuss challenges they do not necessarily have a consistent view of the objectives of branding activity although all were able to clearly articulate branding objectives for their university, including both qualitative and, to some extent, quantitative metrics. Some measures of the real value of branding activity are therefore suggested but a key debate is perhaps whether the objectives and role of branding in higher education needs to be clarified, and a more consistent view of appropriate metrics reached? Various challenges in implementing branding approaches are also highlighted

    The Lore of Low Methane Livestock:Co-Producing Technology and Animals for Reduced Climate Change Impact

    Get PDF
    Methane emissions from sheep and cattle production have gained increasing profile in the context of climate change. Policy and scientific research communities have suggested a number of technological approaches to mitigate these emissions. This paper uses the concept of co-production as an analytical framework to understand farmers’ evaluation of a 'good animal’. It examines how technology and sheep and beef cattle are co-produced in the context of concerns about the climate change impact of methane. Drawing on 42 semi-structured interviews, this paper demonstrates that methane emissions are viewed as a natural and integral part of sheep and beef cattle by farmers, rather than as a pollutant. Sheep and beef cattle farmers in the UK are found to be an extremely heterogeneous group that need to be understood in their specific social, environmental and consumer contexts. Some are more amenable to appropriating methane reducing measures than others, but largely because animals are already co-constructed from the natural and the technical for reasons of increased production efficiency

    Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study

    Get PDF
    Background: The risk of severe COVID-19 if an individual becomes infected is known to be higher in older individuals and those with underlying health conditions. Understanding the number of individuals at increased risk of severe COVID-19 and how this varies between countries should inform the design of possible strategies to shield or vaccinate those at highest risk. / Methods: We estimated the number of individuals at increased risk of severe disease (defined as those with at least one condition listed as “at increased risk of severe COVID-19” in current guidelines) by age (5-year age groups), sex, and country for 188 countries using prevalence data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 and UN population estimates for 2020. The list of underlying conditions relevant to COVID-19 was determined by mapping the conditions listed in GBD 2017 to those listed in guidelines published by WHO and public health agencies in the UK and the USA. We analysed data from two large multimorbidity studies to determine appropriate adjustment factors for clustering and multimorbidity. To help interpretation of the degree of risk among those at increased risk, we also estimated the number of individuals at high risk (defined as those that would require hospital admission if infected) using age-specific infection–hospitalisation ratios for COVID-19 estimated for mainland China and making adjustments to reflect country-specific differences in the prevalence of underlying conditions and frailty. We assumed males were twice at likely as females to be at high risk. We also calculated the number of individuals without an underlying condition that could be considered at increased risk because of their age, using minimum ages from 50 to 70 years. We generated uncertainty intervals (UIs) for our estimates by running low and high scenarios using the lower and upper 95% confidence limits for country population size, disease prevalences, multimorbidity fractions, and infection–hospitalisation ratios, and plausible low and high estimates for the degree of clustering, informed by multimorbidity studies. / Findings: We estimated that 1·7 billion (UI 1·0–2·4) people, comprising 22% (UI 15–28) of the global population, have at least one underlying condition that puts them at increased risk of severe COVID-19 if infected (ranging from 66% of those aged 70 years or older). We estimated that 349 million (186–787) people (4% [3–9] of the global population) are at high risk of severe COVID-19 and would require hospital admission if infected (ranging from <1% of those younger than 20 years to approximately 20% of those aged 70 years or older). We estimated 6% (3–12) of males to be at high risk compared with 3% (2–7) of females. The share of the population at increased risk was highest in countries with older populations, African countries with high HIV/AIDS prevalence, and small island nations with high diabetes prevalence. Estimates of the number of individuals at increased risk were most sensitive to the prevalence of chronic kidney disease, diabetes, cardiovascular disease, and chronic respiratory disease. / Interpretation: About one in five individuals worldwide could be at increased risk of severe COVID-19, should they become infected, due to underlying health conditions, but this risk varies considerably by age. Our estimates are uncertain, and focus on underlying conditions rather than other risk factors such as ethnicity, socioeconomic deprivation, and obesity, but provide a starting point for considering the number of individuals that might need to be shielded or vaccinated as the global pandemic unfolds
    • 

    corecore