587 research outputs found

    Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

    Get PDF
    Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair

    Learning curves for pediatric laparoscopy: how many operations are enough? The Amsterdam experience with laparoscopic pyloromyotomy

    Get PDF
    Few studies on the surgical outcomes of open (OP) versus laparoscopic pyloromyotomy (LP) in the treatment of hypertrophic pyloric stenosis have been published. The question arises as to how many laparoscopic procedures are required for a surgeon to pass the learning curve and which technique is best in terms of postoperative complications. This study aimed to evaluate and quantify the learning curve for the laparoscopic technique at the authors' center. A second goal of this study was to evaluate the pre- and postoperative data of OP versus LP for infantile hypertrophic pyloric stenosis. A retrospective analysis was performed for 229 patients with infantile hypertrophic pyloric stenosis. Between January 2002 and September 2008, 158 infants underwent OP and 71 infants had LP. The median operating time between the OP (33 min) and LP (40 min) groups was significantly different. The median hospital stay after surgery was 3 days for the OP patients and 2 days for the LP patients (p = 0.002). The postoperative complication rates were not significantly different between the OP (21.5%) and LP (21.1%) groups (p = 0.947). Complications were experienced by 31.5% of the first 35 LP patients. This rate decreased to 11.4% during the next 35 LP procedures (p = 0.041). Two perforations and three conversions occurred in the first LP group, compared with one perforation in the second LP group. The number of complications decreased significantly between the first and second groups of the LP patients, with the second group of LP patients quantifying the learning curve. Not only was the complication rate lower in the second LP group, but severe complications also were decreased. This indicates that the learning curve for LP in the current series involved 35 procedure

    Feasibility and diagnostic power of transthoracic coronary Doppler for coronary flow velocity reserve in patients referred for myocardial perfusion imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial perfusion imaging (MPI), using single photon emission computed tomography (SPECT) is a validated method for detecting coronary artery disease. Transthoracic Doppler echocardiography (TTDE) of flow at rest and during adenosine provocation has previously been evaluated in selected patient groups. We therefore wanted to compare the diagnostic ability of TTDE in the left anterior descending coronary artery (LAD) to that of MPI in an unselected population of patients with chest pain referred for MPI. Our hypothesis was that TTDE with high accuracy would identify healthy individuals and exclude them from the need for further studies, enabling invasive investigations to be reserved for patients with a high probability of disease.</p> <p>Methods</p> <p>Sixty-nine patients, 44 men and 25 women, age 61 Β± 10 years (range 35–82), with a clinical suspicion of stress induced myocardial ischemia, were investigated. TTDE was performed at rest and during adenosine stress for myocardial scintigraphy.</p> <p>Results</p> <p>We found that coronary flow velocity reserve (CFVR) determined from diastolic measurements separated normal from abnormal MPI findings with statistical significance. TTDE identified coronary artery disease, defined from MPI, as reversible ischemia and/or permanent defect, with a sensitivity of 60% and a specificity of 79%. The positive predictive value was 43% and the negative predictive value was 88%. There was an overlap between groups which could be due to abnormal endothelial function in patients with normal myocardial perfusion having either hypertension or diabetes.</p> <p>Conclusion</p> <p>TTDE is an attractive non-invasive method to evaluate chest pain without the use of isotopes, but the diagnostic power is strongly dependent on the population investigated. Even in our heterogeneous clinical cardiac population, we found that CFVR>2 in the LAD excluded significant coronary artery disease detected by MPI.</p

    Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    Get PDF
    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (rβ‰₯0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2

    Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left Ventricular Remodeling after Myocardial Infarction

    Get PDF
    Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV) remodeling post-myocardial infarction (MI). However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling.Poly(ethylene glycol) (PEG) gels of storage modulus G'β€Š=β€Š0.5Β±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI) at 7Β±1 day(s) post-MI as a baseline and again post-injection 49Β±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01). However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01). The cellular response to injection was also similar in both groups.The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling

    Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography

    Get PDF
    BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies

    Simvastatin inhibits TGFΞ²1-induced fibronectin in human airway fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-Ξ²1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFΞ²1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.</p> <p>Methods</p> <p>We used simvastatin (1-15 ΞΌM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 ΞΌM) and farnesyl transferase (FT; FTI-277, 10 ΞΌM) were used to determine whether GGT1 and FT contribute to TGFΞ²1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 ΞΌM) or farnesylpyrophosphate (30 ΞΌM).</p> <p>Results</p> <p>Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFΞ²1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFΞ²1-induced signaling. Asthmatic fibroblasts exhibited greater TGFΞ²1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.</p> <p>Conclusions</p> <p>We conclude that TGFΞ²1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.</p

    Transcriptional Activation of OsDERF1 in OsERF3 and OsAP2-39 Negatively Modulates Ethylene Synthesis and Drought Tolerance in Rice

    Get PDF
    The phytohormone ethylene is a key signaling molecule that regulates a variety of developmental processes and stress responses in plants. Transcriptional modulation is a pivotal process controlling ethylene synthesis, which further triggers the expression of stress-related genes and plant adaptation to stresses; however, it is unclear how this process is transcriptionally modulated in rice. In the present research, we report the transcriptional regulation of a novel rice ethylene response factor (ERF) in ethylene synthesis and drought tolerance. Through analysis of transcriptional data, one of the drought-responsive ERF genes, OsDERF1, was identified for its activation in response to drought, ethylene and abscisic acid. Transgenic plants overexpressing OsDERF1 (OE) led to reduced tolerance to drought stress in rice at seedling stage, while knockdown of OsDERF1 (RI) expression conferred enhanced tolerance at seedling and tillering stages. This regulation was supported by negative modulation in osmotic adjustment response. To elucidate the molecular basis of drought tolerance, we identified the target genes of OsDERF1 using the Affymetrix GeneChip, including the activation of cluster stress-related negative regulators such as ERF repressors. Biochemical and molecular approaches showed that OsDERF1 at least directly interacted with the GCC box in the promoters of ERF repressors OsERF3 and OsAP2-39. Further investigations showed that OE seedlings had reduced expression (while RI lines showed enhanced expression) of ethylene synthesis genes, thereby resulting in changes in ethylene production. Moreover, overexpression of OsERF3/OsAP2-39 suppressed ethylene synthesis. In addition, application of ACC recovered the drought-sensitive phenotype in the lines overexpressing OsERF3, showing that ethylene production contributed to drought response in rice. Thus our data reveal that a novel ERF transcriptional cascade modulates drought response through controlling the ethylene synthesis, deepening our understanding of the regulation of ERF proteins in ethylene related drought response
    • …
    corecore