479 research outputs found

    Giantin is the major Golgi autoantigen in human anti-Golgi complex sera

    Get PDF
    Anti-Golgi complex antibodies (AGAs) are primarily associated with systemic lupus erythematosus and Sjögren's syndrome. Here we report on the immunoreactivity of AGAs against five Golgi autoantigens (giantin, golgin-245, golgin-160, golgin-95/GM130, and golgin-97) and provide data from epitope mapping on the most common Golgi autoantigen, namely giantin. A total of 80 human sera containing AGAs, as defined by indirect immunofluorescence on HEp-2 cells, were analyzed by ELISA using recombinant autoantigens and immunoprecipitation. The proportion of AGA sera that reacted with the five Golgi autoantigens was correlated with the molecular mass of the Golgi antigens. Autoantibodies to giantin, the largest Golgi autoantigen, were the predominant AGAs, being found in 50% of the AGA sera. Epitope mapping of giantin was performed using six recombinant fragments spanning the entire protein. Antigiantin-positive sera with low titer autoantibodies recognized epitopes in the carboxyl-terminal fragments that are proximal to the Golgi membrane, whereas higher titer sera exhibited strong reactivity to amino-terminal and central domains that are likely to extend from the Golgi membrane into the cytoplasm. Our working hypothesis is that aberrantly expressed Golgi complex autoantigens may be released into the immune system when cells undergo lysis. By virtue of a carboxyl-terminal transmembrane domain, giantin is likely to be more stably associated with the cytoplasmic face of the Golgi complex than are other golgins, which are peripheral proteins. The stable association of giantin with the putative released Golgi complex may contribute to its preferential autoantigenicity

    Identification of kinectin as a novel Behçet's disease autoantigen

    Get PDF
    There has been some evidence that Behçet's disease (BD) has a significant autoimmune component but the molecular identity of putative autoantigens has not been well characterized. In the initial analysis of the autoantibody profile in 39 Chinese BD patients, autoantibodies to cellular proteins were uncovered in 23% as determined by immunoblotting. We have now identified one of the major autoantibody specificities using expression cloning. Serum from a BD patient was used as a probe to immunoscreen a λZAP expression cDNA library. Candidate autoantigen cDNAs were characterized by direct nucleotide sequencing and their expressed products were examined for reactivity to the entire panel of BD sera using immunoprecipitation. Reactivity was also examined with normal control sera and disease control sera from patients with lupus and Sjögren's syndrome. Six independent candidate clones were isolated from the cDNA library screen and were identified as overlapping partial human kinectin cDNAs. The finding that kinectin was an autoantigen was verified in 9 out of 39 (23%) BD patient sera by immunoprecipitation of the in vitro translation products. Sera from controls showed no reactivity. The significance of kinectin as a participant in autoimmune pathogenesis in BD and the potential use of autoantibody to kinectin in serodiagnostics are discussed

    MicroRNAs in systemic rheumatic diseases

    Get PDF
    MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded RNAs about 21 nucleotides in length. miRNAs have been shown to regulate gene expression and thus influence a wide range of physiological and pathological processes. Moreover, they are detected in a variety of sources, including tissues, serum, and other body fluids, such as saliva. The role of miRNAs is evident in various malignant and nonmalignant diseases, and there is accumulating evidence also for an important role of miRNAs in systemic rheumatic diseases. Abnormal expression of miRNAs has been reported in autoimmune diseases, mainly in systemic lupus erythematosus and rheumatoid arthritis. miRNAs can be aberrantly expressed even in the different stages of disease progression, allowing miRNAs to be important biomarkers, to help understand the pathogenesis of the disease, and to monitor disease activity and effects of treatment. Different groups have demonstrated a link between miRNA expression and disease activity, as in the case of renal flares in lupus patients. Moreover, miRNAs are emerging as potential targets for new therapeutic strategies of autoimmune disorders. Taken together, recent data demonstrate that miRNAs can influence mechanisms involved in the pathogenesis, relapse, and specific organ involvement of autoimmune diseases. The ultimate goal is the identification of a miRNA target or targets that could be manipulated through specific therapies, aiming at activation or inhibition of specific miRNAs responsible for the development of disease

    Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients

    Get PDF
    Introduction MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis. Methods Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR. Results Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production. Conclusions Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis

    Nanosatellite experiments to enable future space-based QKD missions

    Get PDF
    We present a programme for establishing the space worthiness of highly-miniaturised, polarisation-entangled, photon pair sources using CubeSat nanosatellites. Once demonstrated, the photon pair sources can be deployed on more advanced satellites that are equipped with optical links to establish a global space-based quantum key distribution network. In doing so, this work will also bring experimental tests of the overlap between quantum and relativistic regimes closer to realisation

    Autoantibodies against the replication protein A complex in systemic lupus erythematosus and other autoimmune diseases

    Get PDF
    Replication protein A (RPA), a heterotrimer with subunits of molecular masses 70, 32, and 14 kDa, is a single-stranded-DNA-binding factor involved in DNA replication, repair, and recombination. There have been only three reported cases of anti-RPA in systemic lupus erythematosus (SLE) and Sjögren syndrome (SjS). This study sought to clarify the clinical significance of autoantibodies against RPA. Sera from 1,119 patients enrolled during the period 2000 to 2005 were screened by immunoprecipitation (IP) of (35)S-labeled K562 cell extract. Antigen-capture ELISA with anti-RPA32 mAb, immunofluorescent antinuclear antibodies (ANA) and western blot analysis with purified RPA were also performed. Our results show that nine sera immunoprecipitated the RPA70–RPA32–RPA14 complex and all were strongly positive by ELISA (titers 1:62,500 to 1:312,500). No additional sera were positive by ELISA and subsequently confirmed by IP or western blotting. All sera showed fine speckled/homogeneous nuclear staining. Anti-RPA was found in 1.4% (4/276) of SLE and 2.5% (1/40) of SjS sera, but not in rheumatoid arthritis (0/35), systemic sclerosis (0/47), or polymyositis/dermatomyositis (0/43). Eight of nine patients were female and there was no racial predilection. Other positive patients had interstitial lung disease, autoimmune thyroiditis/hepatitis C virus/pernicious anemia, or an unknown diagnosis. Autoantibody specificities found in up to 40% of SLE and other diseases, such as anti-nRNP, anti-Sm, anti-Ro, and anti-La, were unusual in anti-RPA-positive sera. Only one of nine had anti-Ro, and zero of nine had anti-nRNP, anti-Sm, anti-La, or anti-ribosomal P antibodies. In summary, high titers of anti-RPA antibodies were found in nine patients (1.4% of SLE and other diseases). Other autoantibodies found in SLE were rare in this subset, suggesting that patients with anti-RPA may form a unique clinical and immunological subset

    Frequent coexistence of anti-topoisomerase I and anti-U1RNP autoantibodies in African American patients associated with mild skin involvement: a retrospective clinical study

    Get PDF
    Introduction: The presence of anti-topoisomerase I (topo I) antibodies is a classic scleroderma (SSc) marker presumably associated with a unique clinical subset. Here the clinical association of anti-topo I was reevaluated in unselected patients seen in a rheumatology clinic setting.Methods: Sera from the initial visit in a cohort of unselected rheumatology clinic patients (n = 1,966, including 434 systemic lupus erythematosus (SLE), 119 SSc, 85 polymyositis/dermatomyositis (PM/DM)) were screened by radioimmunoprecipitation. Anti-topo I-positive sera were also tested with immunofluorescence and RNA immunoprecipitation.Results: Twenty-five (15 Caucasian, eight African American, two Latin) anti-topo I positive patients were identified, and all except one met the ACR SSc criteria. Coexistence of other SSc autoantibodies was not observed, except for anti-U1RNP in six cases. When anti-topo I alone versus anti-topo I + U1RNP groups were compared, African American (21% vs. 67%), overlap with SLE (0 vs. 50%; P = 0.009) or PM/DM (0 vs. 33%; P = 0.05) or elevated creatine phosphokinase (CPK) (P = 0.07) were more common in the latter group. In comparison of anti-topo I-positive Caucasians versus African Americans, the latter more frequently had anti-U1RNP (13% vs. 50%), mild/no skin changes (14% vs. 63%; P = 0.03) and overlap with SLE (0 vs. 38%; P = 0.03) and PM/DM (0 vs. 25%; P = 0.05).Conclusions: Anti-topo I detected by immunoprecipitation in unselected rheumatology patients is highly specific for SSc. Anti-topo I coexisting with anti-U1RNP in African American patients is associated with a subset of SLE overlapping with SSc and PM/DM but without apparent sclerodermatous changes. \ua9 2011 Satoh et al.; licensee BioMed Central Ltd

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
    corecore