20 research outputs found
Farmers’ acceptance of insects as an alternative protein source in poultry feeds
The research aimed at assessing the perceptions and willingness of poultry farmers, feed traders and processors to use insects as a source of protein ingredient in poultry feed. The research used a cross-sectional design and a structured questionnaire to collect quantitative data from 287 poultry farmers and 71 feed traders from 3 culturally diverse regions in Uganda. The study findings revealed that majority of the farmers mixed their own poultry feed. Willingness to use insects in poultry feeds was expressed by over 70% of the farmers, feed traders and processors, indicating a strong potential demand for insect-based feeds. However, some poultry farmers doubted the possibility of acquiring insects (rearing/harvesting) in large enough quantities and the consumers’ acceptance of poultry products from birds raised on insect-based feed. Nonetheless, there is a high potential for adoption of insects for use as poultry feed if they can be produced in sustainable quantities that ensure the viability of poultry farming and the feed processing businesses.
Int. J. Agril. Res. Innov. & Tech. 8 (2): 32-41, December, 201
Recommended from our members
Temperature-dependent phenology of the parasitoid Fopius arisanus on the host Bactrocera dorsalis
Fopius arisanus (Sonan), an egg-pupal parasitoid of numerous fruit fly species, was recently introduced into Africa for the control of the Oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, life-table data of F. arisanus were generated under laboratory conditions at six constant temperatures (15, 20, 25, 30, 28 and 35 °C; 75% RH, L12:D12 photoperiod) and under variable conditions in a screenhouse on B. dorsalis. Several non-linear functions were fitted to model species development, mortality, longevity and oviposition using the Insect Life Cycle Modeling (ILCYM) software. The established phenology models were stochastically simulated at variable temperatures to estimate the life table parameters. Fopius arisanus completed development from egg to adult at all the temperatures tested except at 35 °C. Mean developmental time from egg to adult was inversely proportional to the temperature. The minimum temperature threshold (Tmin) from egg to adult was 8.15 °C, while the maximum temperature threshold (Tmax) was estimated at 34.2 °C. The optimal temperature for immature stages survival was predicted for 20-30 °C. The optimum fecundity estimated was 251 eggs/female at 22 °C. Following the stochastic simulations under natural conditions of the selected agro-ecological zones, it appears that the Humid Forest with Bimodal Rainfall provides a suitable thermal condition for potential population growth of F. arisanus. The present study shows the importance of temperature on the demographic parameters of F. arisanus. Implications of present findings on the biological control of B. dorsalis under climate change scenarios is discussed
Recommended from our members
Reliability of Pheromone Trap Catches and Maize Plant Damage as Criteria for Timing Fall Armyworm Control Interventions in Humid Forest Agroecology of Central Africa
Control of fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) since its invasion of Africa still depends on pesticides. Early detection of adults is considered the key to the success of larvae control in the crop field. However, FAW control thresholds based on current monitoring techniques are not well established in Africa. We investigated the efficacy of moth capture frequencies and FAW incidence levels as decision tools for FAW management. Experiments were conducted over two maize cropping seasons during which FAW incidence, severity, and larvae count were recorded during destructive sampling after the application of a homologated insecticide. During the first season, the FAW incidence ranged from 37.5 ± 5.6% in the 25% incidence threshold treatment to 48.1 ± 8.1% in the control. During the second season, the incidence was significantly lower in the 25% incidence threshold treatment (55.8 ± 5.7%) compared with the control (75.7 ± 3.0%). Over the two seasons, no significant difference in FAW damage severity was recorded between the treatments and control. The highest number of larvae per plant (4.0 ± 0.6) was observed in the 10% incidence threshold treatment. Insecticide application did not consistently contribute to reducing FAW incidence and observed plant damage did not translate into yield loss. FAW control needs further investigation to establish a threshold above which damage translates into yield loss, thus necessitating control intervention
Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions
Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion
Recommended from our members
Pheromone traps and climate variations influence populations of Sahlbergella singularis (Hemiptera: Miridae) and associated damage of cocoa in Cameroon
Knowledge of insect pest ecology and biology is important for maximizing crop protection and reducing crop losses. Currently, we lack an efficient control program for the cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae), the principal insect pest of cocoa in West and Central Africa. A 2-yr study was conducted in 11 plantations across Ayos and Konye, two of the largest cocoa growing areas of Cameroon. We evaluated the effects of mirid sex pheromone and climatic variations on mirid population dynamics and their associated cocoa damage. Sex pheromone traps caught 1.5-fold higher mirids in Ayos than in Konye, with more overall counts in 2015 than in 2016. Cocoa pod counts were also significantly higher in 2015 than in 2016 and were negatively correlated with temperature and relative humidity. In both localities, mirid populations and associated cocoa pod damage were suppressed in plantations where sex pheromone traps were used. Damage incidence was positively correlated with mirid counts, confirming that the cocoa pod is the preferential site for mirid feeding and reproduction. As such, damage incidence could be used as proxy for comparative mirid population level due to the mirid’s cryptic habit. Of the recorded weather variables, only relative humidity was correlated (negatively) with damage severity. Our data on the relationships between damage caused by mirids and their population dynamics and sex pheromone trap catches suggest that an effective control strategy using mass trapping could be developed for mirid management in cocoa plantations