578 research outputs found
The experiences of Chinese general practitioners in communicating with people with type 2 diabetes - a focus group study
BACKGROUND: China has more ascertained cases of diabetes than any other country. Much of the care of people with type 2 diabetes (T2DM) in China is managed by GPs and this will increase with the implementation of health care reforms aimed at strengthening China’s primary health care system. Diabetes care requires effective communication between physicians and patients, yet little is known about this area in China. We aimed to explore the experiences of Chinese GPs in communicating with diabetes patients and how this may relate to communication skills training. METHODS: Focus groups with Chinese GPs were undertaken. Purposive sampling was used to recruit 15 GPs from Guangzhou city in China. All data were audio-recorded and transcribed. A thematic analysis using the Framework Method was applied to code the data and identify themes. RESULTS: Seven males and 8 females from 12 general practices attended 4 focus groups with a mean age of 37.6 years and 7.5 years’ work experience. Four major themes were identified: diversity in diabetic patients, communication with patients, patient-doctor relationship, and communication skills training. GPs reported facing a wide variety of diabetes patients in their daily practice. They believed insufficient knowledge and misunderstanding of diabetes was common among patients. They highlighted several challenges in communicating with diabetes patients, such as insufficient consultation time, poor communication regarding blood glucose monitoring and misunderstanding the risk of complications. They used terms such as “blind spot” or “not on the same channel” to describe gaps in their patients’ understanding of diabetes and its management, and cited this as a cause of ineffective patient-doctor communication. Mutual understanding of diabetes was perceived to be an important factor towards building positive patient-doctor relationships. Although GPs believed communication skills training was necessary, they reported rarely received this. CONCLUSIONS: Chinese GPs reported facing challenges in communicating with diabetes patients. Some of these were perceived as being due to the patients themselves, others were attributed to system constraints, and some were seen as related to a lack of clinician training. The study identified key issues for the development of primary care-based management of diabetes in China, and for developing appropriate communication skills training programs for the primary care workforce. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12875-021-01506-9
Targeting miR-27a/VE-cadherin interactions rescues cerebral cavernous malformations in mice.
Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM
Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations.
Cerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, CCM1, CCM2, and CCM3, have been identified as the cause of human CCMs. Currently, no drug is available to treat CCM disease. Hyperactive mitogen-activated protein kinase kinase Kinase 3 (MEKK3) kinase signaling as a consequence of loss of CCM genes is an underlying cause of CCM lesion development. Using a U.S. Food and Drug Administration-approved kinase inhibitor library combined with virtual modeling and biochemical and cellular assays, we have identified a clinically approved small compound, ponatinib, that is capable of inhibiting MEKK3 activity and normalizing expression of downstream kruppel-like factor (KLF) target genes. Treatment with this compound in neonatal mouse models of CCM can prevent the formation of new CCM lesions and reduce the growth of already formed lesions. At the ultracellular level, ponatinib can normalize the flattening and disorganization of the endothelium caused by CCM deficiency. Collectively, our study demonstrates ponatinib as a novel compound that may prevent CCM initiation and progression in mouse models through inhibition of MEKK3-KLF signaling
Reduced functional measure of cardiovascular reserve predicts admission to critical care unit following kidney transplantation
Background: There is currently no effective preoperative assessment for patients undergoing kidney transplantation that is
able to identify those at high perioperative risk requiring admission to critical care unit (CCU). We sought to determine if
functional measures of cardiovascular reserve, in particular the anaerobic threshold (VO2AT) could identify these patients.
Methods: Adult patients were assessed within 4 weeks prior to kidney transplantation in a University hospital with a 37-bed
CCU, between April 2010 and June 2012. Cardiopulmonary exercise testing (CPET), echocardiography and arterial
applanation tonometry were performed.
Results: There were 70 participants (age 41.7614.5 years, 60% male, 91.4% living donor kidney recipients, 23.4% were
desensitized). 14 patients (20%) required escalation of care from the ward to CCU following transplantation. Reduced
anaerobic threshold (VO2AT) was the most significant predictor, independently (OR = 0.43; 95% CI 0.27–0.68; p,0.001) and
in the multivariate logistic regression analysis (adjusted OR = 0.26; 95% CI 0.12–0.59; p = 0.001). The area under the receiveroperating-
characteristic curve was 0.93, based on a risk prediction model that incorporated VO2AT, body mass index and
desensitization status. Neither echocardiographic nor measures of aortic compliance were significantly associated with CCU
admission.
Conclusions: To our knowledge, this is the first prospective observational study to demonstrate the usefulness of CPET as a
preoperative risk stratification tool for patients undergoing kidney transplantation. The study suggests that VO2AT has the
potential to predict perioperative morbidity in kidney transplant recipients
Identification of mutations in the PYRIN-containing NLR genes (NLRP) in head and neck squamous cell carcinoma
Head and Neck Squamous Cell Carcinoma (HNSCC) encompasses malignancies that arise in the mucosa of the upper aerodigestive tract. Recent high throughput DNA sequencing revealed HNSCC genes mutations that contribute to several cancer cell characteristics, including dysregulation of cell proliferation and death, intracellular proinflammatory signaling, and autophagy. The PYRIN-domain containing NLR (Nucleotide-binding domain, Leucine rich Repeats - containing) proteins have recently emerged as pivotal modulators of cell death, autophagy, inflammation, and metabolism. Their close physiologic association with cancer development prompted us to determine whether mutations within the NLRP (PYRIN-containing NLR ) gene family were associated with HNSCC genome instability and their clinicopathologic correlations. Catastrophic mutational events underlie cancer cell genome instability and mark a point-of-no-return in cancer cell development and generation of heterogeneity. The mutation profiles of 62 patients with primary conventional type HNSCC excluding other histologic variants were analyzed. Associations were tested using Fisher's Exact test or Mann-Whitney U test. Mutations in NLRP were associated with elevated genome instability as characterized by higher mutation rates. Clinically, NLRP mutations were more frequently found in HNSCC arising in the floor of mouth (50.0%) in comparison with HNSCC at other head and neck locations (14.8%). These mutations were clustered at the leucine rich repeats region of NLRP proteins, and affected NLRP genes were mostly localized at chromosomes 11p15.4 and 19q13.42-19q13.43. Twenty novel NLRP mutations were identified in HNSCC, and mutations in this group of genes were correlated with increased cancer cell genome mutation rates, and such features could be a potential molecular biomarker of HNSCC genome instability. © 2014 Lei et al
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms
- …