15 research outputs found

    Self-assembled hydrogel fibers for sensing the multi-compartment intracellular milieu

    Get PDF
    Targeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu

    GABA Expression and Regulation by Sensory Experience in the Developing Visual System

    Get PDF
    The developing retinotectal system of the Xenopus laevis tadpole is a model of choice for studying visual experience-dependent circuit maturation in the intact animal. The neurotransmitter gamma-aminobutyric acid (GABA) has been shown to play a critical role in the formation of sensory circuits in this preparation, however a comprehensive neuroanatomical study of GABAergic cell distribution in the developing tadpole has not been conducted. We report a detailed description of the spatial expression of GABA immunoreactivity in the Xenopus laevis tadpole brain at two key developmental stages: stage 40/42 around the onset of retinotectal innervation and stage 47 when the retinotectal circuit supports visually-guided behavior. During this period, GABAergic neurons within specific brain structures appeared to redistribute from clusters of neuronal somata to a sparser, more uniform distribution. Furthermore, we found that GABA levels were regulated by recent sensory experience. Both ELISA measurements of GABA concentration and quantitative analysis of GABA immunoreactivity in tissue sections from the optic tectum show that GABA increased in response to a 4 hr period of enhanced visual stimulation in stage 47 tadpoles. These observations reveal a remarkable degree of adaptability of GABAergic neurons in the developing brain, consistent with their key contributions to circuit development and function

    Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors

    No full text
    Local GABA (gamma-aminobutyric acid) circuits contribute to sensory experience-dependent refinement of neuronal connections in the developing nervous system, but whether GABAergic synapses themselves can be rapidly modified by sensory stimuli is largely unknown. Here we report that repetitive light stimuli or theta burst stimulation (TBS) of the optic nerve in the developing Xenopus retinotectal system induces long-term potentiation (LTP) of glutamatergic inputs but long-term depression (LTD) of GABAergic inputs to the same tectal neuron. The LTD is due to a reduction in presynaptic GABA release and requires activation of presynaptic NMDA (N-methyl-D-aspartate) receptors (NMDARs) and coincident high-level GABAergic activity. Thus, the presynaptic NMDAR may function as a coincidence detector for adjacent glutamatergic and GABAergic activities, leading to coordinated synaptic modification by sensory experience
    corecore