20 research outputs found

    A profile of hospital-admitted paediatric burns patients in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Injuries and deaths from burns are a serious, yet preventable health problem globally. This paper describes burns in a cohort of children admitted to the Red Cross Children's Hospital, in Cape Town, South Africa.</p> <p>This six month retrospective case note review looked at a sample of consecutively admitted patients from the 1 <sup>st </sup>April 2007 to the 30 <sup>th </sup>September 2007. Information was collected using a project-specific data capture sheet. Descriptive statistics (percentages, medians, means and standard deviations) were calculated, and data was compared between age groups. Spearman's correlation co-efficient was employed to look at the association between the total body surface area and the length of stay in hospital.</p> <p>Findings</p> <p>During the study period, 294 children were admitted (f= 115 (39.1%), m= 179 (60.9%)). Hot liquids caused 83.0% of the burns and 36.0% of these occurred in children aged two years or younger. Children over the age of five were equally susceptible to hot liquid burns, but the mechanism differed from that which caused burns in the younger child.</p> <p>Conclusion</p> <p>In South Africa, most hospitalised burnt children came from informal settlements where home safety is a low priority. Black babies and toddlers are most at risk for sustaining severe burns when their environment is disorganized with respect to safety. Burns injuries can be prevented by improving the home environment and socio-economic living conditions through the health, social welfare, education and housing departments.</p

    Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherinβˆ’ (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs

    Payments and quality of care in private for-profit and public hospitals in Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Empirical evidence on how ownership type affects the quality and cost of medical care is growing, and debate on these topics is ongoing. Despite the fact that the private sector is a major provider of hospital services in Greece, little comparative information on private versus public sector hospitals is available. The aim of the present study was to describe and compare the operation and performance of private for-profit (PFP) and public hospitals in Greece, focusing on differences in nurse staffing rates, average lengths of stay (ALoS), and Social Health Insurance (SHI) payments for hospital care per patient discharged.</p> <p>Methods</p> <p>Five different datasets were prepared and analyzed, two of which were derived from information provided by the National Statistical Service (NSS) of Greece and the other three from data held by the three largest SHI schemes in the country. All data referred to the 3-year period from 2001 to 2003.</p> <p>Results</p> <p>PFP hospitals in Greece are smaller than public hospitals, with lower patient occupancy, and have lower staffing rates of all types of nurses and highly qualified nurses compared with public hospitals. Calculation of ALoS using NSS data yielded mixed results, whereas calculations of ALoS and SHI payments using SHI data gave results clearly favoring the public hospital sector in terms of cost-efficiency; in all years examined, over all specialties and all SHI schemes included in our study, unweighted ALoS and SHI payments for hospital care per discharge were higher for PFP facilities.</p> <p>Conclusions</p> <p>In a mixed healthcare system, such as that in Greece, significant performance differences were observed between PFP and public hospitals. Close monitoring of healthcare provision by hospital ownership type will be essential to permit evidence-based decisions on the future of the public/private mix in terms of healthcare provision.</p

    Cell tracking in cardiac repair: what to image and how to image

    Get PDF
    Stem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences. Thus far, these technical and protocol refinements have played a critical role not only in the evaluation of the recovery of cardiac function but also in providing important insights into the mechanism of action of stem cells. Molecular imaging, in its many forms, has rapidly become a necessary tool for the validation and optimisation of stem cell engrafting strategies in preclinical studies. These include a suite of radionuclide, magnetic resonance and optical imaging strategies to evaluate non-invasively the fate of transplanted cells. In this review, we highlight the state-of-the-art of the various imaging techniques for cardiac stem cell presenting the strengths and limitations of each approach, with a particular focus on clinical applicability

    Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC

    Get PDF
    Ξ± Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-Ξ³-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells
    corecore