69 research outputs found

    Interventional suite and equipment management: cradle to grave

    Get PDF
    The acquisition process for interventional equipment and the care that this equipment receives constitute a comprehensive quality improvement program. This program strives to (a) achieve the production of good image quality that meets clinical needs, (b) reduce radiation doses to the patient and personnel to their lowest possible levels, and (c) provide overall good patient care at reduced cost. Interventional imaging equipment is only as effective and efficient as its supporting facility. The acquisition process of interventional equipment and the development of its environment demand a clinical project leader who can effectively coordinate the efforts of the many professionals who must communicate and work effectively on this type of project. The clinical project leader needs to understand (a) clinical needs of the end users, (b) how to justify the cost of the project, (c) the technical needs of the imaging and all associated equipment, (d) building and construction limitations, (e) how to effectively read construction drawings, and (f) how to negotiate and contract the imaging equipment from the appropriate vendor. After the initial commissioning of the equipment, it must not be forgotten. The capabilities designed into the imaging device can be properly utilized only by well-trained operators and staff who were initially properly trained and receive ongoing training concerning the latest clinical techniques throughout the equipment’s lifetime. A comprehensive, ongoing maintenance and repair program is paramount to reducing costly downtime of the imaging device. A planned periodic maintenance program can identify and eliminate problems with the imaging device before these problems negatively impact patient care

    Sugar sweetened beverage consumption by Australian children: Implications for public health strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High consumption of sugar sweetened beverages (SSBs) has been linked to unhealthy weight gain and nutrition related chronic disease. Intake of SSB among children remains high in spite of public health efforts to reduce consumption, including restrictions on marketing to children and limitations on the sale of these products in many schools. Much extant literature on Australian SSB consumption is out-dated and lacks information on several key issues. We sought to address this using a contemporary Australian dataset to examine purchase source, consumption pattern, dietary factors, and demographic profile of SSB consumption in children.</p> <p>Methods</p> <p>Data were from the 2007 Australian National Children's Nutrition and Physical Activity Survey, a representative random sample of 4,834 Australian children aged 2-16 years. Mean SSB intake by type, location and source was calculated and logistic regression models were fitted to determine factors associated with different levels of consumption.</p> <p>Results</p> <p>SSB consumption was high and age-associated differences in patterns of consumption were evident. Over 77% of SSB consumed was purchased via supermarkets and 60% of all SSB was consumed in the home environment. Less than 17% of SSB was sourced from school canteens and fast food establishments. Children whose parents had lower levels of education consumed more SSB on average, while children whose parents had higher education levels were more likely to favour sweetened juices and flavoured milks.</p> <p>Conclusions</p> <p>SSB intake by Australian children remains high and warrants continued public health attention. Evidence based and age-targeted interventions, which also recognise supermarkets as the primary source of SSB, are recommended to reduce SSB consumption among children. Additionally, education of parents and children regarding the health consequences of high consumption of both carbonated and non-carbonated SSBs is required.</p

    5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    Get PDF
    Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective alpha subunit GABA(A) receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. The 5-HT1A receptor antagonist WAY-100635 (0.1-1 mg/kg) reversed the SIH-reducing effects of the non-alpha-subunit selective GABA(A) receptor agonist diazepam (1-4 mg/kg) and the GABA(A) receptor alpha(3)-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential alpha(1)-subunit GABA(A) receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. The present study suggests an interaction between GABA(A) receptor alpha-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABA(A) receptor alpha(3)-subunits. Further understanding of the interactions between the GABA(A) and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs

    A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective.</p> <p>Methods</p> <p>We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed.</p> <p>Results</p> <p>Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≤10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m<sup>2</sup>, and -1.00 vs 1.60 kg/m<sup>2</sup>, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners.</p> <p>Conclusions</p> <p>Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences.</p
    • …
    corecore