23 research outputs found

    Self-perceived psychological stress and ischemic stroke: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing body of evidence suggests that psychological stress contributes to coronary artery disease. However, associations between stress and stroke are less clear. In this study, we investigated the possible association between ischemic stroke and self-perceived psychological stress, as measured by a single-item questionnaire, previously reported to be associated with myocardial infarction.</p> <p>Methods</p> <p>In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), 600 consecutive patients with acute ischemic stroke (aged 18 to 69 years) and 600 age-matched and sex-matched population controls were recruited. Ischemic stroke subtype was determined according to Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. Self-perceived psychological stress preceding stroke was assessed retrospectively using a single-item questionnaire.</p> <p>Results</p> <p>Permanent self-perceived psychological stress during the last year or longer was independently associated with overall ischemic stroke (multivariate adjusted odds ratio (OR) 3.49, 95% confidence interval (CI) 2.06 to 5.93). Analyses by stroke subtype showed that this association was present for large vessel disease (OR 3.91, 95% CI 1.58 to 9.67), small vessel disease (OR 3.20, 95% CI 1.64 to 6.24), and cryptogenic stroke (OR 4.03, 95% CI 2.34 to 6.95), but not for cardioembolic stroke (OR 1.48, 95% CI 0.64 to 3.39).</p> <p>Conclusion</p> <p>In this case-control study, we found an independent association between self-perceived psychological stress and ischemic stroke. A novel finding was that this association differed by ischemic stroke subtype. Our results emphasize the need for further prospective studies addressing the potential role for psychological stress as a risk factor for ischemic stroke. In such studies ischemic stroke subtypes should be taken into consideration.</p

    Symptoms of depression are an independent risk factor for stroke in the under 65s

    No full text

    Analysis of microtubule dynamic instability using a plus-end growth marker

    No full text
    Regulation of microtubule dynamics is essential for many cell biological processes, and is likely to be variable between different subcellular regions. We describe a computational approach to analyze microtubule dynamics by detecting growing microtubule plus ends. Our algorithm tracks all EB1-EGFP comets visible in an image time-lapse sequence allowing the detection of spatial patterns of microtubule dynamics. We use spatiotemporal clustering of EB1-EGFP growth tracks to infer microtubule behaviors during phases of pause and shortening. The algorithm was validated by comparison to manually tracked, homogeneously labeled microtubules, and by analysis of the effects of well-characterized inhibitors of microtubule polymerization dynamics. We used our method to analyze spatial variations of intracellular microtubule dynamics in migrating epithelial cells

    Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules

    No full text
    The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses
    corecore