198 research outputs found

    Constant-angle surfaces in liquid crystals

    Get PDF
    We discuss some properties of surfaces in R3 whose unit normal has constant angle with an assigned direction field. The constant angle condition can be rewritten as an Hamilton-Jacobi equation correlating the surface and the direction field. We focus on examples motivated by the physics of interfaces in liquid crystals and of layered fluids, and discuss the properties of the constant-angle surfaces when the direction field is singular along a line (disclination) or at a point (hedgehog defect

    Interaction and efficacy of Keigai-rengyo-to extract and acupuncture in male patients with acne vulgaris: A study protocol for a randomized controlled pilot trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In consideration of patients seeking to use traditional Chinese medicine, an evidence-based potentiality for safe and effective use of herbal medicine and acupuncture in treatment of acne vulgaris has been suggested. However, despite common use of a combination of herbal medicine and acupuncture in clinical practice, the current level of evidence is insufficient to draw a conclusion for an interaction and efficacy of herbal medicine and acupuncture. Therefore, considering these methodological flaws, this study was designed to assess the interaction and efficacy of an available herbal medicine, Keigai-rengyo-to extract (KRTE), and acupuncture for treatment of acne using the 2 × 2 factorial design and the feasibility of a large clinical trial.</p> <p>Methods/Design</p> <p>A randomized, assessor single blinded, 2 × 2 factorial pilot trial will be conducted. Forty four participants with acne vulgaris will be randomized into one of four groups: waiting list group (WL), KRTE only group (KO), acupuncture only group (AO), and KRTE and acupuncture combined treatment group (KA). After randomization, a total of 8 sessions of acupuncture treatment will be performed twice a week in the AO- and KA groups, respectively. Patients in the KO- and KA groups will be prescribed KRTE 3 times a day at a dose of 7.4 g after meals for 4 weeks. The following outcome measurements will be used in examination of subjects: the mean percentage change and the count change of inflammatory and non-inflammatory acne lesions, the Skindex 29, visual analogue scale (VAS) and investigator global assessment (IGA) from baseline to the end of the trial.</p> <p>Trial Registration</p> <p>The trial is registered with the Clinical Research Information Service (CRiS), Republic of Korea: KCT0000071.</p

    Plasmin Inhibitors Prevent Leukocyte Accumulation and Remodeling Events in the Postischemic Microvasculature

    Get PDF
    Clinical trials revealed beneficial effects of the broad-spectrum serine protease inhibitor aprotinin on the prevention of ischemia-reperfusion (I/R) injury. The underlying mechanisms remained largely unclear. Using in vivo microscopy on the cremaster muscle of male C57BL/6 mice, aprotinin as well as inhibitors of the serine protease plasmin including tranexamic acid and ε-aminocaproic acid were found to significantly diminish I/R-elicited intravascular firm adherence and (subsequent) transmigration of neutrophils. Remodeling of collagen IV within the postischemic perivenular basement membrane was almost completely abrogated in animals treated with plasmin inhibitors or aprotinin. In separate experiments, incubation with plasmin did not directly activate neutrophils. Extravascular, but not intravascular administration of plasmin caused a dose-dependent increase in numbers of firmly adherent and transmigrated neutrophils. Blockade of mast cell activation as well as inhibition of leukotriene synthesis or antagonism of the platelet-activating-factor receptor significantly reduced plasmin-dependent neutrophil responses. In conclusion, our data suggest that extravasated plasmin(ogen) mediates neutrophil recruitment in vivo via activation of perivascular mast cells and secondary generation of lipid mediators. Aprotinin as well as the plasmin inhibitors tranexamic acid and ε-aminocaproic acid interfere with this inflammatory cascade and effectively prevent postischemic neutrophil responses as well as remodeling events within the vessel wall

    Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    Get PDF
    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology

    Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Get PDF
    Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O(2), rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III)

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions

    ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells

    Get PDF
    ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM’s role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves
    corecore