92 research outputs found

    Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma

    Get PDF
    © 2015 The Authors. Respirology published by Wiley Publishing Asia Pty Ltd on behalf of Asian Pacific Society of Respirology. Background and objective Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti-viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses. Methods Neutrophils from peripheral blood from asthmatic and non-asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f-met-leu-phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell-free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 release, or after 24 h for CXCL8 release. Results LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP-9 whereas poly I:C selectively induced CXCL8 release only. R848-induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non-asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect. Conclusion Neutrophils release CXCL8, NE and MMP-9 in response to viral surrogates with R848-induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll-like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral-induced exacerbations. We aimed to investigate and compare neutrophil responses to bacterial compounds and viral mimetics as well as compare responses between people with and without asthma. We also investigated neutrophil responses to live respiratory viruses. Here we provide a novel comprehensive comparison showing differential and specific activation in innate immune cells. See Editorial, page 1

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Evaluation of the nutrition knowledge of sports department students of universities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals who have knowledge on the importance of adequate and balanced diet and reflect this knowledge to their behaviors are considered to be more successful in sports life. The present study aims to evaluate the nutrition knowledge of students receiving sports education in universities.</p> <p>Methods</p> <p>The study sample consists of 343 voluntary students from the Sports Departments of Hacettepe, Gazi and Ankara Universities in Ankara. The questionnaire used in the study included a demographic section, and 30 questions on true-false nutrition knowledge. For the reliability of the questionnaire, the internal consistency coefficient was calculated and the Kuder Richardson (KR-20) value was found to be 0.71. For higher reliability, 9 dysfunctional questions were excluded from the questionnaire. The research data were collected through a questionnaire form and face-to-face interviews. For the statistical analyses of the data, tables were prepared to show mean, standard deviation (<inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1550-2783-8-11-i1"><m:mover accent="true"><m:mrow><m:mi>X</m:mi></m:mrow><m:mo class="MathClass-op">̄</m:mo></m:mover><m:mo class="MathClass-bin">±</m:mo><m:mi>S</m:mi><m:mi>D</m:mi></m:math></inline-formula>) and percentage (%) values. In order to determine the nutrition knowledge of students, the "independent t test" was used for nutrition lesson and gender.</p> <p>Results</p> <p>University students receiving sports education and expected to continue their professional lives on sport-related fields were determined to have the lack of knowledge on nutrition. The mean value about the nutrition knowledge of the first year students was found 11.150 ± 2.962, while the mean value of the fourth year students was 13.460 ± 3.703, and the difference is statistically significant (p = .000).</p> <p>Conclusion</p> <p>Students, coaches and teachers in physical education were found not to give the necessary importance to their diets, and they were still not aware of the importance of nutrition on performance.</p

    Gene Expression Analysis in the Thalamus and Cerebrum of Horses Experimentally Infected with West Nile Virus

    Get PDF
    Gene expression associated with West Nile virus (WNV) infection was profiled in the central nervous system of horses. Pyrosequencing and library annotation was performed on pooled RNA from the CNS and lymphoid tissues on horses experimentally infected with WNV (vaccinated and naïve) and non-exposed controls. These sequences were used to create a custom microarray enriched for neurological and immunological sequences to quantitate gene expression in the thalamus and cerebrum of three experimentally infected groups of horses (naïve/WNV exposed, vaccinated/WNV exposed, and normal)

    Differential Gene Expression and Adherence of Escherichia coli O157:H7 In Vitro and in Ligated Pig Intestines

    Get PDF
    BACKGROUND: Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS: It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE: Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further

    Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoke has both pro-inflammatory and immunosuppressive effects. Both active and passive cigarette smoke exposure are linked to an increased incidence and severity of respiratory virus infections, but underlying mechanisms are not well defined. We hypothesized, based on prior gene expression profiling studies, that upregulation of pro-inflammatory mediators by short term smoke exposure would be protective against a subsequent influenza infection.</p> <p>Methods</p> <p>BALB/c mice were subjected to whole body smoke exposure with 9 cigarettes/day for 4 days. Mice were then infected with influenza A (H3N1, Mem71 strain), and analyzed 3 and 10 days later (d3, d10). These time points are the peak and resolution (respectively) of influenza infection.</p> <p>Results</p> <p>Inflammatory cell influx into the bronchoalveolar lavage (BALF), inflammatory mediators, proteases, histopathology, viral titres and T lymphocyte profiles were analyzed. Compared to smoke or influenza alone, mice exposed to smoke and then influenza had more macrophages, neutrophils and total lymphocytes in BALF at d3, more macrophages in BALF at d10, lower net gelatinase activity and increased activity of tissue inhibitor of metalloprotease-1 in BALF at d3, altered profiles of key cytokines and CD4+ and CD8+ T lymphocytes, worse lung pathology and more virus-specific, activated CD8+ T lymphocytes in BALF. Mice smoke exposed before influenza infection had close to 10-fold higher lung virus titres at d3 than influenza alone mice, although all mice had cleared virus by d10, regardless of smoke exposure. Smoke exposure caused temporary weight loss and when smoking ceased after viral infection, smoke and influenza mice regained significantly less weight than smoke alone mice.</p> <p>Conclusion</p> <p>Smoke induced inflammation does not protect against influenza infection.</p> <p>In most respects, smoke exposure worsened the host response to influenza. This animal model may be useful in studying how smoke worsens respiratory viral infections.</p

    H5N1 and 1918 Pandemic Influenza Virus Infection Results in Early and Excessive Infiltration of Macrophages and Neutrophils in the Lungs of Mice

    Get PDF
    Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. These results together show that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection. In addition, primary macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro and in infected mouse lung tissue

    The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence

    Get PDF
    PURPOSE: A review of the role of the carotenoids, lutein and zeaxanthin, and their function in altering the pathogenesis of age-related macular degeneration (AMD). METHODS: Medline and Embase search. RESULTS: Recent evidence introduces the possibility that lutein and zeaxanthin, carotenoids found in a variety of fruits and vegetables may protect against the common eye disease of macular degeneration. This potential and the lack to slow the progression of macular degeneration, has fueled high public interest in the health benefits of these carotenoids and prompted their inclusion in various supplements. The body of evidence supporting a role in this disease ranges from basic studies in experimental animals to various other clinical and epidemiological studies. Whilst some epidemiological studies suggest a beneficial role for carotenoids in the prevention of AMD, others are found to be unrelated to it. Results of some clinical studies indicate that the risk for AMD is reduced when levels of the carotenoids are elevated in the serum or diet, but this correlation is not observed in other studies. Published data concerning the toxicity of the carotenoids or the optimum dosage of these supplements is lacking. CONCLUSION: An intake of dietary supplied nutrients rich in the carotenoids, lutein and zeaxanthin, appears to be beneficial in protecting retinal tissues, but this is not proven. Until scientifically sound knowledge is available we recommend for patients judged to be at risk for AMD to: alter their diet to more dark green leafy vegetables, wear UV protective lenses and a hat when outdoors. Future investigations on the role of nutrition, light exposure, genetics, and combinations of photodynamic therapy with intravitreal steroid (triamcinolone-acetonide) injections hold potential for future treatment possibilities
    corecore