20 research outputs found

    CUTICULAR WATER PERMEANCE OF EUROPEAN TREES AND SHRUBS GROWN IN POLLUTED AND UNPOLLUTED ATMOSPHERES, AND ITS RELATION TO STOMATAL RESPONSE TO HUMIDITY IN BEECH (FAGUS-SYLVATICA L)

    No full text
    Cuticular water permeance (P) of astomatous adaxial surfaces of intact leaves was determined in Acer pseudoplatanus L., Betula pubescens Ehrh., Corylus avellana L., Fagus sylvatica L. and Prunus avium L. Water evaporating from the stomata-bearing abaxial leaf surface could not reach the moisture analyzer and the values of P presented here are therefore free from errors that often arise from unintentional inclusion of residual stomatal transpiration. Plants were exposed from before bud-break for several months to 20-50 ppb SO2 (Fagus), a combination of 50-60 ppb SO2 and 50-60 ppb NO2 (Betula), 300-400 ppb NO (Acer, Corylus, Fagus), regular ozone episodes of up to 120 ppb (Fagus, Prunus), or an elevated level of CO2 (600 ppm for 2 yr; Acer, Fagus). Permeances were in the range 0.6-2.9 x 10(-5) m s-1 and were unaffected by most treatments. In Prunus, P increased slightly but significantly in the NO treatment. In Corylus and Fagus, P was sometimes found to be reduced by fumigation with NO, but not always. Betula leaves grown under elevated SO2 and NO2 showed higher values of P only if they were visibly damaged. Minimum conductances (g(min) estimated from water loss rates of both sides of detached hypostomatous leaves were higher than P, and were more strongly affected by treatments. In these cases, the most probable explanation is some damage to stomatal function resulting in a reduced ability to close after leaf excision. Effects of growing conditions and time of year on P were found, which allowed a hypothetical interaction between P and stomatal sensitivity to air humidity to be tested in beech. No unambiguous indication of such a relationship was found

    Cuticular permeance in relation to wax and cutin development along the growing barley ( Hordeum vulgare ) leaf.

    No full text
    The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or 14C-labelled benzoic acid ([14C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0–25 mm from the point of leaf insertion (POLI). Resistance—the inverse of permeance—to uptake of [14C] BA was determined for four leaf regions and was lowest in the region 10–20 mm above POLI. At 20–30 and 50–60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76–80 mm above POLI, resistance was as high as at 50–60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate

    Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss

    No full text
    The effects of the contents and chemical composition of the foliar epicuticular waxes of species from the caatinga (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro) and cerrado (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa) were evaluated as to the resistance to water loss by means of an experimental device constructed for this purpose. In general, the waxes of the caatinga species investigated were more efficient against water loss than cerrado species. Increase of the thickness of the waxy deposits from 40 to 90m g.cm-2 had no significant effect on the resistance to water loss. The chemistry of the wax constituents was shown to be an important factor to determine the degree of resistance to evaporation. n-Alkanes and alcoholic triterpenes were the most efficient barriers, while hentriacontan-16-one (a ketone) and ursolic acid (an acid triterpene) revealed lowefficiency. The higher efficiency of the waxes of the leaves from caatinga species (mainly those of C. yco and Z. joazeiro) is probably accounted for the predominance of n-alkanes in their composition. The lower efficiency of the waxes of A. pyrifolium (caatinga), T. formosa and A. esperanzae (both species from the cerrado) is probably a consequence of the predominance of triterpenoids in the waxes of the two former species and hentriacontan-16-one in the latter.<br>A influência do teor e da composição química das ceras epicuticulares foliares de espécies da caatinga (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida e Ziziphus joazeiro) e do cerrado (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina e Tocoyena formosa) foram avaliadas em relação à resistência à perda de água, através de um dispositivo experimental construído para essa finalidade. Em geral, as ceras das espécies da caatinga foram mais eficientes contra a perda de água que as das espécies do cerrado. O aumento da espessura dos depósitos cerosos de 40 até 90 mg.cm-2 não alterou significativamente a resistência à evaporação. A natureza química dos componentes das ceras revelou-se um fator importante na determinação do grau de resistência à evaporação. n-Alcanos e triterpenos alcoólicos foram os constituintes mais eficientes como barreiras à evaporação, enquanto hentriacontan-16-ona (uma cetona) e ácido ursólico (triterpeno com função carboxílica) foram menos eficazes. A maior eficiência das ceras epicuticulares de duas espécies da caatinga (C. yco e Z. joazeiro) provavelmente se deve à predominância de n-alcanos em sua composição. A menor eficiência das ceras epicuticulares de A. pyrifolium (outra espécie da caatinga), T. formosa e A. esperanzae (ambas espécies do cerrado), à predominância em suas ceras de ácido ursólico para as duas primeiras e hentriacontan-16-para a última
    corecore