830 research outputs found

    Hemodynamic latency is associated with reduced intelligence across the lifespan: an fMRI DCM study of aging, cerebrovascular integrity, and cognitive ability

    Get PDF
    Changes in neurovascular coupling are associated with both Alzheimer’s disease and vascular dementia in later life, but this may be confounded by cerebrovascular risk. We hypothesized that hemodynamic latency would be associated with reduced cognitive functioning across the lifespan, holding constant demographic and cerebrovascular risk. In 387 adults aged 18–85 (mean = 48.82), dynamic causal modeling was used to estimate the hemodynamic response function in the left and right V1 and V3-ventral regions of the visual cortex in response to a simple checkerboard block design stimulus with minimal cognitive demands. The hemodynamic latency (transit time) in the visual cortex was used to predict general cognitive ability (Full-Scale IQ), controlling for demographic variables (age, race, education, socioeconomic status) and cerebrovascular risk factors (hypertension, alcohol use, smoking, high cholesterol, BMI, type 2 diabetes, cardiac disorders). Increased hemodynamic latency in the visual cortex predicted reduced cognitive function (p < 0.05), holding constant demographic and cerebrovascular risk. Increased alcohol use was associated with reduced overall cognitive function (Full Scale IQ 2.8 pts, p < 0.05), while cardiac disorders (Full Scale IQ 3.3 IQ pts; p < 0.05), high cholesterol (Full Scale IQ 3.9 pts; p < 0.05), and years of education (2 IQ pts/year; p < 0.001) were associated with higher general cognitive ability. Increased hemodynamic latency was associated with reduced executive functioning (p < 0.05) as well as reductions in verbal concept formation (p < 0.05) and the ability to synthesize and analyze abstract visual information (p < 0.01). Hemodynamic latency is associated with reduced cognitive ability across the lifespan, independently of other demographic and cerebrovascular risk factors. Vascular health may predict cognitive ability long before the onset of dementias

    Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts.

    Get PDF
    The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care

    Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland

    Get PDF
    Factor H autoantibodies can impair complement regulation, resulting in atypical hemolytic uremic syndrome, predominantly in childhood. There are no trials investigating treatment, and clinical practice is only informed by retrospective cohort analysis. Here we examined 175 children presenting with atypical hemolytic uremic syndrome in the United Kingdom and Ireland for factor H autoantibodies that included 17 children with titers above the international standard. Of the 17, seven had a concomitant rare genetic variant in a gene encoding a complement pathway component or regulator. Two children received supportive treatment; both developed established renal failure. Plasma exchange was associated with a poor rate of renal recovery in seven of 11 treated. Six patients treated with eculizumab recovered renal function. Contrary to global practice, immunosuppressive therapy to prevent relapse in plasma exchange–treated patients was not adopted due to concerns over treatment-associated complications. Without immunosuppression, the relapse rate was high (five of seven). However, reintroduction of treatment resulted in recovery of renal function. All patients treated with eculizumab achieved sustained remission. Five patients received renal transplants without specific factor H autoantibody–targeted treatment with recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate eculizumab therapy for treatment of factor H autoantibody–mediated atypical hemolytic uremic syndrome rather than plasma exchange with or without immunosuppression. Based on this retrospective analysis we see no suggestion of inferior treatment, albeit the strength of our conclusions is limited by the small sample siz

    Null Mutations in EphB Receptors Decrease Sharpness of Frequency Tuning in Primary Auditory Cortex

    Get PDF
    Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2−/−;EphB3−/− and EphB3−/− mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q20) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q20 values than either EphB3−/− mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development

    ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expansion of raw protein sequence databases in the post genomic era and availability of fresh annotated sequences for major localizations particularly motivated us to introduce a new improved version of our previously forged eukaryotic subcellular localizations prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential clues about its functioning, hence, availability of localization predictor would definitely aid and expedite the protein deciphering studies. However, robustness of a predictor is highly dependent on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to improve the performance of presently available method using latest dataset and crucial input features.</p> <p>Results</p> <p>Here, we describe augmentation in the prediction performance obtained for our most popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM). In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific protein sequence sets; 1198 fungi sequences, 2597 from animal and 491 plant sequences were also included in the present study. First, using the evolutionary information in the form of profile composition along with whole and N-terminal sequence composition as an input feature vector of 440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-fold cross-validation. Further, enhancement in performance was observed when similarity search based results were coupled with whole and N-terminal sequence composition along with profile composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies reported till date on the same datasets.</p> <p>Conclusion</p> <p>These results provide confidence about the reliability and accurate prediction of SVM modules generated in the present study using sequence and profile compositions along with similarity search based results. The presently developed modules are implemented as web server "ESLpred2" available at <url>http://www.imtech.res.in/raghava/eslpred2/</url>.</p

    Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Blechnum orientale </it>Linn. (<it>Blechnaceae</it>) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of <it>Blechnum orientale </it>Linn.</p> <p>Methods</p> <p>Five solvent fractions were obtained from the methanol extract of <it>B. orientale</it> through successive partitioning with petroleum ether, chloroform, ethyl acetate, butanol and water. Total phenolic content was assessed using Folin-Ciocalteu's method. The antioxidant activity was determined by measuring the scavenging activity of DPPH radicals. Cytotoxic activity was tested against four cancer cell lines and a non-malignant cell using MTT assay. Antibacterial activity was assessed using the disc diffusion and broth microdilution assays. Standard phytochemical screening tests for saponins, tannins, terpenoids, flavonoids and alkaloids were also conducted.</p> <p>Results</p> <p>The ethyl acetate, butanol and water fractions possessed strong radical scavenging activity (IC<sub>50 </sub>8.6-13.0 μg/ml) and cytotoxic activity towards human colon cancer cell HT-29 (IC<sub>50 </sub>27.5-42.8 μg/ml). The three extracts were also effective against all Gram-positive bacteria tested: <it>Bacillus cereus, Micrococcus luteus</it>, methicillin-susceptible <it>Staphylococcus aureus </it>(MSSA), methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) and <it>Stapylococcus epidermidis</it>(minimum inhibitory concentration MIC 15.6-250 μg/ml; minimum bactericidal concentration MBC 15.6-250 μg/ml). Phytochemical analysis revealed the presence of flavonoids, terpenoids and tannins. Ethyl acetate and butanol fractions showed highest total phenolic content (675-804 mg gallic acid equivalent/g).</p> <p>Conclusions</p> <p>The results indicate that this fern is a potential candidate to be used as an antioxidant agent, for colon cancer therapy and for treatment of MRSA infections and other MSSA/Gram-positive bacterial infectious diseases.</p

    Interaction of 8-Hydroxyquinoline with Soil Environment Mediates Its Ecological Function

    Get PDF
    Background: Allelopathic functions of plant-released chemicals are often studied through growth bioassays assuming that these chemicals will directly impact plant growth. This overlooks the role of soil factors in mediating allelopathic activities of chemicals, particularly non-volatiles. Here we examined the allelopathic potential of 8-hydroxyquinoline (HQ), a chemical reported to be exuded from the roots of Centaurea diffusa. Methodology/Principal Findings: Growth bioassays and HQ recovery experiments were performed in HQ-treated soils (non-sterile, sterile, organic matter-enriched and glucose-amended) and untreated control soil. Root growth of either Brassica campestris or Phalaris minor was not affected in HQ-treated non-sterile soil. Soil modifications (organic matter and glucose amendments) could not enhance the recovery of HQ in soil, which further supports the observation that HQ is not likely to be an allelopathic compound. Hydroxyquinoline-treated soil had lower values for the CO2 release compared to untreated non-sterile soil. Soil sterilization significantly influenced the organic matter content, PO 4-P and total organic nitrogen levels. Conclusion/Significance: Here, we concluded that evaluation of the effect of a chemical on plant growth is not enough in evaluating the ecological role of a chemical in plant-plant interactions. Interaction of the chemical with soil factors largel

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore