303 research outputs found
Hierarchical Models in the Brain
This paper describes a general model that subsumes many parametric models for
continuous data. The model comprises hidden layers of state-space or dynamic
causal models, arranged so that the output of one provides input to another. The
ensuing hierarchy furnishes a model for many types of data, of arbitrary
complexity. Special cases range from the general linear model for static data to
generalised convolution models, with system noise, for nonlinear time-series
analysis. Crucially, all of these models can be inverted using exactly the same
scheme, namely, dynamic expectation maximization. This means that a single model
and optimisation scheme can be used to invert a wide range of models. We present
the model and a brief review of its inversion to disclose the relationships
among, apparently, diverse generative models of empirical data. We then show
that this inversion can be formulated as a simple neural network and may provide
a useful metaphor for inference and learning in the brain
Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system
Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information
Qualia: The Geometry of Integrated Information
According to the integrated information theory, the quantity of consciousness is
the amount of integrated information generated by a complex of elements, and the
quality of experience is specified by the informational relationships it
generates. This paper outlines a framework for characterizing the informational
relationships generated by such systems. Qualia space (Q) is a space having an
axis for each possible state (activity pattern) of a complex. Within Q, each
submechanism specifies a point corresponding to a repertoire of system states.
Arrows between repertoires in Q define informational relationships. Together,
these arrows specify a quale—a shape that completely and univocally
characterizes the quality of a conscious experience. Φ— the
height of this shape—is the quantity of consciousness associated with
the experience. Entanglement measures how irreducible informational
relationships are to their component relationships, specifying concepts and
modes. Several corollaries follow from these premises. The quale is determined
by both the mechanism and state of the system. Thus, two different systems
having identical activity patterns may generate different qualia. Conversely,
the same quale may be generated by two systems that differ in both activity and
connectivity. Both active and inactive elements specify a quale, but elements
that are inactivated do not. Also, the activation of an element affects
experience by changing the shape of the quale. The subdivision of experience
into modalities and submodalities corresponds to subshapes in Q. In principle,
different aspects of experience may be classified as different shapes in Q, and
the similarity between experiences reduces to similarities between shapes.
Finally, specific qualities, such as the “redness” of red,
while generated by a local mechanism, cannot be reduced to it, but require
considering the entire quale. Ultimately, the present framework may offer a
principled way for translating qualitative properties of experience into
mathematics
CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium
Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (JV) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease
Patient- and system-related barriers for the earlier diagnosis of colorectal cancer
<p>Abstract</p> <p>Background</p> <p>A cohort of colorectal cancer (CRC) patients represents an opportunity to study missed opportunities for earlier diagnosis. Primary objective: To study the epidemiology of diagnostic delays and failures to offer/complete CRC screening. Secondary objective: To identify system- and patient-related factors that may contribute to diagnostic delays or failures to offer/complete CRC screening.</p> <p>Methods</p> <p>Setting: Rural Veterans Administration (VA) Healthcare system. Participants: CRC cases diagnosed within the VA between 1/1/2000 and 3/1/2007. Data sources: progress notes, orders, and pathology, laboratory, and imaging results obtained between 1/1/1995 and 12/31/2007. Completed CRC screening was defined as a fecal occult blood test or flexible sigmoidoscopy (both within five years), or colonoscopy (within 10 years); delayed diagnosis was defined as a gap of more than six months between an abnormal test result and evidence of clinician response. A summary abstract of the antecedent clinical care for each patient was created by a certified gastroenterologist (GI), who jointly reviewed and coded the abstracts with a general internist (TW).</p> <p>Results</p> <p>The study population consisted of 150 CRC cases that met the inclusion criteria. The mean age was 69.04 (range 35-91); 99 (66%) were diagnosed due to symptoms; 61 cases (46%) had delays associated with system factors; of them, 57 (38% of the total) had delayed responses to abnormal findings. Fifteen of the cases (10%) had prompt symptom evaluations but received no CRC screening; no patient factors were identified as potentially contributing to the failure to screen/offer to screen. In total, 97 (65%) of the cases had missed opportunities for early diagnosis and 57 (38%) had patient factors that likely contributed to the diagnostic delay or apparent failure to screen/offer to screen.</p> <p>Conclusion</p> <p>Missed opportunities for earlier CRC diagnosis were frequent. Additional studies of clinical data management, focusing on following up abnormal findings, and offering/completing CRC screening, are needed.</p
Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling
BACKGROUND: Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP) is becoming more important. METHODS AND RESULTS: The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP) protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters) owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. CONCLUSION: To obtain unique values for molecular diffusion coefficient and binding rate parameters from FRAP data, we propose conducting two FRAP experiments on the same class of macromolecule and cell. One experiment should be used to measure the molecular diffusion coefficient independently of binding in an effective diffusion regime and the other should be conducted in a reaction dominant or reaction-diffusion regime to quantify binding rate parameters. The method described in this paper is likely to be widely used to estimate in-vivo biomolecule mass transport and binding rate parameters
Dopamine Inhibits Mitochondrial Motility in Hippocampal Neurons
The trafficking of mitochondria within neurons is a highly regulated process. In an earlier study, we found that serotonin (5-HT), acting through the 5-HT1A receptor subtype, promotes axonal transport of mitochondria in cultured hippocampal neurons by increasing Akt activity, and consequently decreasing glycogen synthase kinase (GSK3beta) activity. This finding suggests a critical role for neuromodulators in the regulation of mitochondrial trafficking in neurons. In the present study, we investigate the effects of a second important neuromodulator, dopamine, on mitochondrial transport in hippocampal neurons.Here, we show that dopamine, like 5-HT, regulates mitochondrial motility in cultured hippocampal neurons through the Akt-GSK3beta signaling cascade. But, in contrast to the stimulatory effect of 5-HT, administration of exogenous dopamine or bromocriptine, a dopamine 2 receptor (D2R) agonist, caused an inhibition of mitochondrial movement. Moreover, pretreatment with bromocriptine blocked the stimulatory effect of 5-HT on mitochondrial movement. Conversely, in cells pretreated with 5-HT, no further increases in movement were observed after administration of haloperidol, a D2R antagonist. In contrast to the effect of the D2R agonist, addition of SKF38393, a dopamine 1 receptor (D1R) agonist, promoted mitochondrial transport, indicating that the inhibitory effect of dopamine was actually the net summation of opposing influences of the two receptor subtypes. The most pronounced effect of dopamine signals was on mitochondria that were already moving directionally. Western blot analysis revealed that treatment with either a D2R agonist or a D1R antagonist decreased Akt activity, and conversely, treatment with either a D2R antagonist or a D1R agonist increased Akt activity.Our observations strongly suggest a role for both dopamine and 5-HT in regulating mitochondrial movement, and indicate that the integrated effects of these two neuromodulators may be important in determining the distribution of energy sources in neurons
A randomized trial of an intervention to improve use and adherence to effective coronary heart disease prevention strategies
<p>Abstract</p> <p>Background</p> <p>Efficacious strategies for the primary prevention of coronary heart disease (CHD) are underused, and, when used, have low adherence. Existing efforts to improve use and adherence to these efficacious strategies have been so intensive that they are impractical for clinical practice.</p> <p>Methods</p> <p>We conducted a randomized trial of a CHD prevention intervention (including a computerized decision aid and automated tailored adherence messages) at one university general internal medicine practice. After obtaining informed consent and collecting baseline data, we randomized patients (men and women age 40-79 with no prior history of cardiovascular disease) to either the intervention or usual care. We then saw them for two additional study visits over 3 months. For intervention participants, we administered the decision aid at the primary study visit (1 week after baseline visit) and then mailed 3 tailored adherence reminders at 2, 4, and 6 weeks. We assessed our outcomes (including the predicted likelihood of angina, myocardial infarction, and CHD death over 10 years (CHD risk) and self-reported adherence) between groups at 3 month follow-up. Data collection occurred from June 2007 through December 2009. All study procedures were IRB approved.</p> <p>Results</p> <p>We randomized 160 eligible patients (81 intervention; 79 control) and followed 96% to study conclusion. Mean predicted CHD risk at baseline was 11.3%. The intervention increased self-reported adherence to chosen risk reducing strategies by 25 percentage points (95% CI 8% to 42%), with the biggest effect for aspirin. It also changed predicted CHD risk by -1.1% (95% CI -0.16% to -2%), with a larger effect in a pre-specified subgroup of high risk patients.</p> <p>Conclusion</p> <p>A computerized intervention that involves patients in CHD decision making and supports adherence to effective prevention strategies can improve adherence and reduce predicted CHD risk.</p> <p>Clinical trials registration number</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00494052">NCT00494052</a></p
- …