74 research outputs found
Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes.
Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass
The Drosophila melanogaster host model
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogenāhost interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterialāhost interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalisāhost interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
Filterless narrowband visible photodetectors
Wavelength selective light detection is crucial for many applications such as imaging and machine vision. Narrowband spectral responses are required for colour discrimination and current systems use broadband photodiodes combined with optical filters. This approach increases architectural complexity, and limits of the quality of colour sensing. Here we report filterless, narrowband red, green, and blue photodiodes with tuneable spectral responses. The devices have simple planar junction architectures with the photoactive layer being a solution processed mixture of either an organohalide perovskite or lead halide semiconductor, and a neutral or cationic organic molecule. The organic molecules modify the optical and electrical properties of the photodiode and facilitate narrowing charge collection narrowing of the device's external quantum efficiency. These red, green, and blue photodiodes all possess full-width-at-half-maxima of <100 nm and performance metrics suitable for many imaging applications
Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimide-Based Co-Polymers with Different Oligothiophene Donor Units
Naphthalenediimide (NDI)-based polymers co-polymerized with thienyl units are an interesting class of polymer semiconductors because of their good electron mobilities and unique film microstructure. Despite these properties, understanding how the extension of the thienyl co-monomer affects charge transport properties remains unclear. With this goal in mind, we have synthesized a series of NDI derivatives of the parent poly{[N,N-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5-(2,2-bithiophene) (P(NDI2OD-T2)), which exhibited excellent electron mobility. The strategy comprises both the extension of the donor o-conjugation length and the heteroatomic fusion of the thiophene rings. These newly synthesized compounds are characterized experimentally and theoretically vis-a-vis with P(NDI2OD-T2) as the reference. UV-vis data and cyclic-voltammetry are adopted to assess the effect of the donor modification on the frontier energy levels and on the bandgap. Intra-molecular polaronic effects are accounted for by computing the internal reorganization energy with density functional theory (DFT) calculations. Finally electrons and holes transport is experimentally investigated in field-effect transistors (FETs), by measuring current-voltage characteristics at variable temperatures. Overall we have identified a regime where inter-molecular effects, such as the wavefunction overlap and the degree of energetic disorder, induced by the different donor group prevail over polaronic effects and are the leading factors in determining electrons mobility
Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors
We investigated preferentially oriented pentacene grains on rubbed polyimide (PI) layers under various conditions, such as substrate temperature and cumulative rubbing number. In case of pentacene thin films deposited on rubbed PI at room temperature (RT), compared to unrubbed, the field-effect mobilities were improved by two- to threefold in contrast to the cases of elevated temperature. From the results of crystalline in-plane orientation and thin-film versus bulk-phase ratio, we proposed that pentacence crystalline orientation on a rubbed PI layer could be more favorable at RT, whereas the heating energy might weaken the interaction energy between pentacene molecules and aligned PI layer. (c) 2008 American Institute of Physics.open113741sciescopu
Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution
We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, "cratered" arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process1891sciescopu
- ā¦