2,424 research outputs found

    Quasiparticle picture of quarks near chiral transition at finite temperature

    Get PDF
    We investigate, using a chiral effective model, the quark spectrum in the critical region of the chiral transition focusing on the effect of the possible mesonic excitations in the quark-gluon plasma phase. We find that there appears a novel three-peak structure in the quark spectra. We elucidate the mechanism of the appearance of the multi-peak structure with the help of a Yukawa model with an elementary boson.Comment: 4 pages, 5 eps figures, to appear in the proceedings of International Conference on Strong & Electroweak Matter 2006, Brookhaven National Laboratory, USA, May 10-13, 200

    Precursor of Color Superconductivity

    Get PDF
    We investigate possible precursory phenomena of color superconductivity at finite temperature TT with an effective theory of QCD. It is found that the fluctuation of the diquark pair field exists with a prominent strength even well above the critical temperature TcT_c. We show that such a fluctuaiton forms a collective mode, the corresponding pole of which approaches the origin as TT is lowered to TcT_c in the complex energy plane. We discuss the possible relevance of the precursor to the observables to be detected in heavy-ion collisions.Comment: 4 pages, 5 figures, Talk presented at the XVIth International Conference on Particles and Nuclei (PANIC02), Osaka, Japan, Sep.30 - Oct.4, 2002, Uses espcrc1.st

    String Field Theory from IIB Matrix Model

    Get PDF
    We derive Schwinger-Dyson equations for the Wilson loops of a type IIB matrix model. Superstring coordinates are introduced through the construction of the loop space. We show that the continuum limit of the loop equation reproduces the light-cone superstring field theory of type IIB superstring in the large-N limit. We find that the interacting string theory can be obtained in the double scaling limit as it is expected.Comment: 21 pages, Latex, 1 figur

    Gaugino Condensation in Heterotic Fivebrane Background

    Full text link
    The gaugino propagator is calculated by explicitly considering the propagation of a heterotic string between two different points in space-time using the non-trivial world-sheet conformal field theory for the fivebrane background. We find that there are no propagations of gaugino which is in the spinor representation of the non-trivial four-dimensional space of the fivebrane background. This result is consistent with the arguments on the fermion zero-modes of the fivebrane background in the low-energy heterotic supergravity theory. Furthermore, assuming the continuous limit to the flat space-time background at the place far away from the fivebrane, we suggest an effective propagator which is effective only at the place far away from the fivebrane in the flat space-time limit. From the effective propagator we evaluate a possible gaugino pair condensation. The result is consistent with the suggested scenario of the gaugino condensation in the fivebrane background in the low-energy heterotic supergravity theory.Comment: 14 page

    BCS-BEC crossover in a relativistic superfluid and its significance to quark matter

    Full text link
    The character change of a superfluid state due to the variation of the attractive force is investigated in the relativistic framework with a massive fermion. Two crossovers are found. One is a crossover from the usual BCS state to the Bose-Einstein condensation (BEC) of bound fermion pairs. The other is from the BEC to the relativistic Bose-Einstein condensation (RBEC) of nearly massless bound pairs where antiparticles as well as particles dominate the thermodynamics. Possible realization of the BEC and RBEC states in the quark matter is also pointed out.Comment: 5 pages, 1 figure, revtex4; (v2) text has been clarified, references updated; (v3) final version to appear in Phys. Rev.

    Chiral and Color-superconducting Phase Transitions with Vector Interaction in a Simple Model (Addenda)

    Get PDF
    In the preceding paper(Prog.Theor.Phys.108(2002)929 or hep-ph/0207255), we have shown that the critical line of the first order chiral transition of QCD can have two endpoints. In this addendum, we elucidate the mechanism to realize the two-endpoint structure in the QCD phase diagram and argue the robustness for the appearance of such an interesting phase structure

    Dynamical Generation of Yukawa Interactions in Intersecting D-brane Models

    Full text link
    We construct a supersymmetric composite model in type IIA T^6/(Z_2 x Z_2) orientifold with intersecting D6-branes. Four generations of quarks and leptons are naturally emerged as composite fields at low energies. Two pairs of light electroweak Higgs doublets are also naturally obtained. The hierarchical Yukawa couplings for the quark-lepton masses can be generated by the interplay between the string-level higher dimensional interactions among "preons" and the dynamics of the confinement of "preons". Besides having four generations of quarks and leptons, the model is not realistic in some points: some exotic particles, one additional U(1) gauge symmetry, no explicit mechanism for supersymmetry breaking, and so on. This model is a toy model to illustrate a new mechanism of dynamical generation of Yukawa couplings for the masses and mixings of quarks and leptons.Comment: 18 pages, 6 figure

    The Evens and Odds of CMB Anomalies

    Get PDF
    The lack of power of large--angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string--inspired pre--inflationary scale Δ\Delta can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the \emph{even}--\ell harmonic multipoles with 20\ell \lesssim 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ\Delta. On the other hand, the first \emph{odd}--\ell multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ\Delta through even and odd multipoles, and we elaborate on possible implications. We include low--\ell polarization data which, despite being noise--limited, help in attaining confidence levels of about 3 σ\sigma in the detection of Δ\Delta. We also show by direct forecasts that a future all--sky EE--mode cosmic--variance--limited polarization survey may push the constraining power for Δ\Delta beyond 5 σ\sigma.Comment: 49 pages, 19 figures. Figures and final discussion simplified, references added. Final version to appear in Physics of the Dark Univers

    SU(2)/Z2SU(2)/Z_2 symmetry of the BKT transition and twisted boundary conditio n

    Full text link
    Berezinskii-Kosterlitz-Thouless (BKT) transition, the transition of the 2D sine-Gordon model, plays an important role in the low dimensional physics. We relate the operator content of the BKT transition to that of the SU(2) Wess-Zumino-Witten model, using twisted boundary conditions. With this method, in order to determine the BKT critical point, we can use the level crossing of the lower excitations than the periodic boundary case, thus the convergence to the transition point is highly improved. Then we verify the efficiency of this method by applying to the S=1,2 spin chains.Comment: LaTex2e,, 33 pages, 14 figures in eps file
    corecore