43 research outputs found

    Daikenchuto accelerates the recovery from prolonged postoperative ileus after open abdominal surgery : a subgroup analysis of three randomized controlled trials

    Get PDF
    Purpose Prolonged postoperative ileus (POI) is a common complication after open abdominal surgery (OAS). Daikenchuto (DKT), a traditional Japanese medicine that peripherally stimulates the neurogenic pathway, is used to treat prolonged POI in Japan. To analyze whether DKT accelerates the recovery from prolonged POI after OAS, we conducted a secondary analysis of three multicenter randomized controlled trials (RCTs). Methods A secondary analysis of the three RCTs supported by the Japanese Foundation for Multidisciplinary Treatment of Cancer (project numbers 39-0902, 40-1001, 42-1002) assessing the effect of DKT on prolonged POI in patients who had undergone OAS for colon, liver, or gastric cancer was performed. The subgroup included 410 patients with no bowel movement (BM) before the first diet, a DKT group (n = 214), and a placebo group (n = 196). Patients received either 5 g DKT or a placebo orally, three times a day. The primary endpoint was defined as the time from the end of surgery to the first bowel movement (FBM). A sensitivity analysis was also performed on the age, body mass index and dosage as subgroup analyses. Results The primary endpoint was significantly accelerated in the DKT group compared with the placebo group (p = 0.004; hazard ratio 1.337). The median time to the FBM was 113.8 h in the placebo group and 99.1 h in the DKT treatment group. Conclusions The subgroup analysis showed that DKT significantly accelerated the recovery from prolonged POI following OAS

    Evidence for an Essential Deglycosylation-Independent Activity of PNGase in Drosophila melanogaster

    Get PDF
    BACKGROUND: Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. PRINCIPAL FINDINGS: In this study, we characterized the ortholog of cytoplasmic PNGases, PNGase-like (Pngl), in Drosophila melanogaster. Pngl was found to have a molecular weight of approximately 74K and was mainly localized in the cytosol. Pngl lacks a CXXC motif that is critical for enzymatic activity in other species and accordingly did not appear to possess PNGase activity, though it still retains carbohydrate-binding activity. We generated microdeletions in the Pngl locus in order to investigate the functional importance of this protein in vivo. Elimination of Pngl led to a serious developmental delay or arrest during the larval and pupal stages, and surviving mutant adult males and females were frequently sterile. Most importantly, these phenotypes were rescued by ubiquitous expression of Pngl, clearly indicating that those phenotypic consequences were indeed due to the lack of functional Pngl. Interestingly, a putative "catalytic-inactive" mutant could not rescue the growth-delay phenotype, indicating that a biochemical activity of this protein is important for its biological function. CONCLUSION: Pngl was shown to be inevitable for the proper developmental transition and the biochemical properties other than deglycosylation activity is important for its biological function

    A Polysaccharide Deacetylase Homologue, PdaA, in Bacillus subtilis Acts as an N-Acetylmuramic Acid Deacetylase In Vitro

    No full text
    A polysaccharide deacetylase homologue, PdaA, was determined to act as an N-acetylmuramic acid deacetylase in vitro. Histidine-tagged truncated PdaA (with the putative signal sequence removed) was overexpressed in Escherichia coli cells and purified. Measurement of deacetylase activity showed that PdaA could deacetylate peptidoglycan treated with N-acetylmuramoyl-l-alanine amidase CwlH but could not deacetylate peptidoglycan treated with or without dl-endopeptidase LytF (CwlE). Reverse-phase high-performance liquid chromatography and mass spectrometry (MS) and MS-MS analyses indicated that PdaA could deacetylate the N-acetylmuramic acid residues of purified glycan strands derived from Bacillus subtilis peptidoglycan

    Flavonoids from Osyris alba

    No full text
    The genus Osyris belongs to the family Santalaceae, and consists of six or seven species ( Mabberley, 1997). Of their species, O. alba L. is a widespread dioecious hemiparasitic shrub and distributed in southern Europe, north Africa and southwest Asia ( Aronne et al., 1993). The aerial parts and fruits were collected in January 2000 in Spain by one of the authors (J. A. López-Sáez). A voucher specimen was deposited in the herbarium of National Museum of Nature and Science, Japan (TNS).Peer Reviewe

    Key Role of Chemical Hardness to Compare 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Power of Flavone and Flavonol O-Glycoside and C-Glycoside Derivatives

    No full text
    The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin. The C- and O-glycosides of flavonoids generally showed higher radical scavenging activity than aglyones; however, kampferol C3-O-glycoside (astragalin) showed higher activity than kaempferol. In the radical scavenging activity of flavonoids, it was expected that OH substitutions at C3 and C5 and catechol substitution at C2 of B ring and intramolecular hydrogen bonding between OH at C5 and ketone at C3 would increase the activity; however, the reasons have yet to be clarified. We here show that the radical scavenging activities of flavonoids are controlled by there absolute hardness and absolute electronegativity as an electron state must be small to increase the radical scavenging activity of flavonoids. The results show that chemically soft kaempferol and quercetin have higher DPPH radical scavenging activity than chemically hard genistein and daizein

    Flavonol glycosides from Asplenium foreziense and its five related taxa and A. incisum

    No full text
    The flavonoids of Asplenium foreziense, A. fontanum subsp. fontanum and subsp. pseudofontanum. A. obovatum subsp. obovatum var. obovatum and var. protobillotii, A. obovatum subsp. lanceolatum, and A. incisum were isolated and identified for chemotaxonomic survey. A major constituent of all taxa was kaempferol 3-O-gentiobioside. As minor compounds, kaempferol 3,7-O-glycoside and/or kaempferol 3-O-glycoside were found in A. fontanum, A. obovatum and A. foreziense, and kaempferol 3-O-gentiobioside-4'-O-glucoside, kaempferol 3-O- glucoside and quercetin 3-O-diglucoside in A. incisum. It was suggested that A. foreziense, A. fontanum including subsp. pseudofontanum and A. obovatum including subsp. lanceolatum are not only morphologically but also chemotaxonomically related. The East Asian A. incisum was chemically and geographically different from these taxa. (C) 2000 Elsevier Science Ltd.Peer Reviewe
    corecore