6,000 research outputs found

    Anderson-Mott Transition in a Magnetic Field: Corrections to Scaling

    Full text link
    It is shown that the Anderson-Mott metal-insulator transition of paramagnetic, interacting disordered electrons in an external magnetic field is in the same universality class as the transition from a ferromagnetic metal to a ferromagnetic insulator discussed recently. As a consequence, large corrections to scaling exist in the magnetic-field universality class, which have been neglected in previous theoretical descriptions. The nature and consequences of these corrections to scaling are discussed.Comment: 5pp., REVTeX, no figs, final version as publishe

    Solar cell cover glass development Final report

    Get PDF
    High vacuum ion beam sputtering of integral coverslips for solar cell utilizatio

    Phase diagram of glassy systems in an external field

    Full text link
    We study the mean-field phase diagram of glassy systems in a field pointing in the direction of a metastable state. We find competition among a ``magnetized'' and a ``disordered'' phase, that are separated by a coexistence line as in ordinary first order phase transitions. The coexistence line terminates in a critical point, which in principle can be observed in numerical simulations of glassy models.Comment: 4 pages, 5 figure

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples

    Transport Anomalies and Marginal Fermi-Liquid Effects at a Quantum Critical Point

    Get PDF
    The conductivity and the tunneling density of states of disordered itinerant electrons in the vicinity of a ferromagnetic transition at low temperature are discussed. Critical fluctuations lead to nonanalytic frequency and temperature dependences that are distinct from the usual long-time tail effects in a disordered Fermi liquid. The crossover between these two types of behavior is proposed as an experimental check of recent theories of the quantum ferromagnetic critical behavior. In addition, the quasiparticle properties at criticality are shown to be those of a marginal Fermi liquid.Comment: 4pp., REVTeX, no figs, final version as publishe

    Order Parameter Description of the Anderson-Mott Transition

    Full text link
    An order parameter description of the Anderson-Mott transition (AMT) is given. We first derive an order parameter field theory for the AMT, and then present a mean-field solution. It is shown that the mean-field critical exponents are exact above the upper critical dimension. Renormalization group methods are then used to show that a random-field like term is generated under renormalization. This leads to similarities between the AMT and random-field magnets, and to an upper critical dimension dc+=6d_{c}^{+}=6 for the AMT. For d<6d<6, an ϵ=6−d\epsilon = 6-d expansion is used to calculate the critical exponents. To first order in ϵ\epsilon they are found to coincide with the exponents for the random-field Ising model. We then discuss a general scaling theory for the AMT. Some well established scaling relations, such as Wegner's scaling law, are found to be modified due to random-field effects. New experiments are proposed to test for random-field aspects of the AMT.Comment: 28pp., REVTeX, no figure

    Quantum critical behavior of disordered itinerant ferromagnets

    Full text link
    The quantum ferromagnetic transition at zero temperature in disordered itinerant electron systems is considered. Nonmagnetic quenched disorder leads to diffusive electron dynamics that induces an effective long-range interaction between the spin or order parameter fluctuations of the form r^{2-2d}, with d the spatial dimension. This leads to unusual scaling behavior at the quantum critical point, which is determined exactly. In three-dimensional systems the quantum critical exponents are substantially different from their finite temperature counterparts, a difference that should be easily observable. Experiments to check these predictions are proposed.Comment: 14pp., REVTeX, 3 eps figs, final version as publishe

    Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling

    Full text link
    The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a recently developed effective field theory. It is shown that there are logarithmic corrections to a previous calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a phase transition of undetermined nature in disordered interacting electron systems. This confirms a previous suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior of the conductivity, the tunneling density of states, and the phase and quasiparticle relaxation rates across the ferromagnetic transition is also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe
    • …
    corecore