18 research outputs found

    Mating behaviour, mate choice and female resistance in the bean flower thrips (Megalurothrips sjostedti)

    Get PDF
    Many species of thrips (Thysanoptera) in the family Thripidae form mating aggregations, but the adaptive significance of these aggregations and the extent of male and female mate choice is poorly understood. We studied the mating behaviour of the bean flower thrips Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), which forms male aggregations and occurs across sub-Saharan Africa. We tested whether males choose mates by female age or mating status. No-choice mating bioassays with one male and one female were used to simulate the way males usually encounter only one female at a time in aggregations in the field. Virgin females violently resisted mating attempts by males, but we found no compelling evidence to establish whether this was indiscriminate or was screening suitable males. Younger males (1–2 days old) did not discriminate females by age (1–2 or 7–10 days old), but older males (7–10 days old) avoided mating with older females. Any male choice by female mating status (virgin or mated) was weak or absent. The mating behaviour of M. sjostedti shows broad similarities with that of other thrips species that form aggregations, but also shows some distinct and novel differences, which can help our understanding of the adaptive significance of aggregations

    Characterization of Male-Produced Aggregation Pheromone of the Bean Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae)

    Get PDF
    Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa
    corecore