265 research outputs found

    THE EFFECTS OF GREEN HOTEL PRACTICES ON HOTEL IMAGE, VISIT INTENTION, AND WORD-OF-MOUTH: FOCUSING ON THE MODERATING ROLES OF CONSUMER ENVIRONMENTAL WORLDVIEWS

    Get PDF
    The objective of this study is to empirically examine the effects of hotel green practices on the image of firms, visit intention, and word-of-mouth. In addition, this study examines the moderating effect of an environmental worldview regarding green hotel attributes and image, and visit intention. A self-administrated survey will be conducted to collect data. For data analysis, simple descriptive statistics, factor analysis, and SEM will be utilized to confirm causal relationships among projected constructs. The results of this study will help hoteliers and hotel developers to understand what green hotel attributes are important and necessary to build favorable hotel images, and help researchers to develop future research projects relating to environmental hotel attributes and consumer behaviors.&nbsp

    An improved bus signal priority system for networks with nearside bus stops

    Get PDF
    Bus Signal Priority (BSP), which has been deployed in many cities around the world, is a traffic signal enhancement strategy that facilitates efficient movement of buses through signalized intersections. Most BSP systems do not work well in transit networks with nearside bus stop because of the uncertainty in dwell time. Unfortunately, most bus stops on arterial roadways are of this type in the U.S. This dissertation showed that dwell time at nearside bus stops could be modeled using weighted least squares regression. More importantly, the prediction intervals associated with the estimate dwell time were calculated. These prediction intervals were subsequently used in the improved BSP algorithm that attempted to reduce the negative effects of nearside bus stops on BSP operations. The improved BSP algorithm was tested on urban arterial section of Bellaire Boulevard in Houston, Texas. VISSIM, a micro simulation model was used to evaluate the performance of the BSP operations. Prior to evaluating the algorithm, the parameters of the micro simulation model were calibrated using an automated Genetic Algorithm based methodology in order to make the model accurately represent the traffic conditions observed in the field. It was shown that the improved BSP algorithm significantly improved the bus operations in terms of bus delay. In addition, it was found that the delay to other vehicles on the network was not statistically different from other BSP algorithms currently being deployed. It is hypothesized that the new approach would be particularly useful in North America where there are many transit systems that utilize nearside bus stops in their networks

    Optimization of Force Sensitivity in Q-Controlled Amplitude-Modulation Atomic Force Microscopy

    Get PDF
    We present control of force sensitivity in Q-controlled amplitude-modulation atomic force microscopy (AM-AFM) that is based on the high-Q quartz tuning-fork. It is found that the phase noise is identical to the amplitude noise divided by oscillation amplitude in AM-AFM. In particular, we observe that while Q-control does not compromise the signal-to-noise ratio, it enhances the detection sensitivity because the minimum detectable force gradient is inversely proportional to the effective quality factor for large bandwidths, which is due to reduction of frequency noise. This work demonstrates Q-control in AM-AFM is a useful technique for enhancement of the force sensitivity with increased Q or improvement of the scanning speed with decreased Q

    Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair

    Get PDF
    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.ope
    corecore