336 research outputs found

    Absence of orbital-selective Mott transition in Ca_2-xSr_xRuO4

    Full text link
    Quasi-particle spectra of the layer perovskite Sr2_2RuO4_4 are calculated within Dynamical Mean Field Theory for increasing values of the on-site Coulomb energy UU. At small UU the planar geometry splits the t2gt_{2g} bands near EFE_F into a wide, two-dimensional dxyd_{xy} band and two narrow, nearly one-dimensional dxz,yzd_{xz,yz} bands. At larger UU, however, the spectral distribution of these states exhibit similar correlation features, suggesting a common metal-insulator transition for all t2gt_{2g} bands at the same critical UU.Comment: 4 pages, 4 figure

    Spectroscopy of SrRuO/Ru Junctions in Eutectic

    Full text link
    We have investigated the tunnelling properties of the interface between superconducting Sr2RuO4 and a single Ru inclusion in eutectic. By using a micro-fabrication technique, we have made Sr2RuO4/Ru junctions on the eutectic system that consists of Sr2RuO4 and Ru micro-inclusions. Such a eutectic system exhibits surface superconductivity, called the 3-K phase. A zero bias conductance peak (ZBCP) was observed in the 3-K phase. We propose to use the onset of the ZBCP to delineate the phase boundary of a time-reversal symmetry breaking state.Comment: To be published in Proc of 24th Int. Conf. on Low Temperature Physics (LT24); 2 page

    Orbital-dependent metamagnetic response in Sr4Ru3O10

    Full text link
    We show that the metamagnetic transition in Sr4_4Ru3_3O10_{10} bifurcates into two transitions as the field is rotated away from the conducting planes. This two-step process comprises partial or total alignment of moments in ferromagnetic bands followed by an itinerant metamagnetic transition whose critical field increases with rotation. Evidence for itinerant metamagnetism is provided by the Shubnikov-de Hass effect which shows a non-trivial evolution of the geometry of the Fermi surface and an enhancement of the quasiparticles effective-mass across the transition. The metamagnetic response of Sr4_4Ru3_3O10_{10} is orbital-dependent and involves ferromagnetic and metamagnetic bands.Comment: Physical Review B (in press

    Anisotropy of the incommensurate fluctuations in Sr2RuO4: a study with polarized neutrons

    Full text link
    The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizeable enhancement of the out of plane component by a factor of two for intermediate energy transfer which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.Comment: 4 pages, 4 figure

    The de Haas-van Alphen effect across the metamagnetic transition in Sr3_3Ru2_2O7_7

    Full text link
    We report a study of the de Haas-van Alphen (dHvA) effect on the itinerant metamagnet Sr3_3Ru2_2O7_7. Extremely high sample purity allows the observation of dHvA oscillations both above and below the metamagnetic transition field of 7.9 T. The quasiparticle masses are fairly large away from the transition, and are enhanced by up to an extra factor of three as the transition is approached, but the Fermi surface topography change is quite small. The results are qualitatively consistent with a field-induced Stoner transition in which the mass enhancement is the result of critical fluctuations.Comment: 4 pages, 3 figure

    Anisotropy in the Antiferromagnetic Spin Fluctuations of Sr2RuO4

    Full text link
    It has been proposed that Sr_2RuO_4 exhibits spin triplet superconductivity mediated by ferromagnetic fluctuations. So far neutron scattering experiments have failed to detect any clear evidence of ferromagnetic spin fluctuations but, instead, this type of experiments has been successful in confirming the existence of incommensurate spin fluctuations near q=(1/3 1/3 0). For this reason there have been many efforts to associate the contributions of such incommensurate fluctuations to the mechanism of its superconductivity. Our unpolarized inelastic neutron scattering measurements revealed that these incommensurate spin fluctuations possess c-axis anisotropy with an anisotropic factor \chi''_{c}/\chi''_{a,b} of \sim 2.8. This result is consistent with some theoretical ideas that the incommensurate spin fluctuations with a c-axis anisotropy can be a origin of p-wave superconductivity of this material.Comment: 5 pages, 3 figures; accepted for publication in PR

    Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms

    Full text link
    We examine the isotope effect of superconductivity in systems with coexisting interactions of phonon and nonphonon mechanisms in addition to the direct Coulomb interaction. The interaction mediated by the spin fluctuations is discussed as an example of the nonphonon interaction. Extended formulas for the transition temperature Tc and the isotope-effect coefficient alpha are derived for cases (a) omega_np omega_D, where omega_np is an effective cutoff frequency of the nonphonon interaction that corresponds to the Debye frequency omega_D in the phonon interaction. In case (a), it is found that the nonphonon interaction does not change the condition for the inverse isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of alpha markedly. In particular, it is found that a giant isotope shift occurs when the phonon and nonphonon interactions cancel each other largely. For instance, strong critical spin fluctuations may give rise to the giant isotope effect. In case (b), it is found that the inverse isotope effect occurs only when the nonphonon interaction and the repulsive Coulomb interaction, in total effect, work as repulsive interactions against the superconductivity. We discuss the relevance of the present result to some organic superconductors, such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse isotope effects have been observed, and briefly to high-Tc cuprates, in which giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic correction

    Two-dimensional incommensurate magnetic fluctuations in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4

    Full text link
    We investigate the imaginary part of the wave vector dependent dynamic spin susceptibility in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4 as a function of temperature using neutron scattering. At T=5 K, two-dimensional incommensurate (IC) magnetic fluctuations are clearly observed around Qc=(0.3,0.3,L)\mathbf{Q}_\text{c}=(0.3,0.3,L) up to approximately 60 meV energy transfer. We find that the IC excitations disperse to ridges around the (Ï€,Ï€)(\pi,\pi) point. Below 50 K, the energy and temperature dependent excitations are well described by the phenomenological response function for a Fermi liquid system with a characteristic energy of 4.0(1) meV. Although the wave vector dependence of the IC magnetic fluctuations in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4 is similar to that in the Fermi liquid state of the parent compound, Sr2_2RuO4_4, the magnetic fluctuations are clearly suppressed by the Ti-doping.Comment: 5 pages, 4 figure
    • …
    corecore