689 research outputs found

    STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride

    Full text link
    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201

    A Pulmonary Paragonimiasis Case Mimicking Metastatic Pulmonary Tumor

    Get PDF
    Pulmonary paragonimiasis is a relatively rare cause of lung disease revealing a wide variety of radiologic findings, such as air-space consolidation, nodules, and cysts. We describe here a case of pulmonary paragonimiasis in a 27-year-old woman who presented with a 2-month history of cough and sputum. Based on chest computed tomography (CT) scans and fluorodeoxyglucose positron emission tomography (FDG-PET) findings, the patient was suspected to have a metastatic lung tumor. However, she was diagnosed as having Paragonimus westermani infection by an immunoserological examination using ELISA. Follow-up chest X-ray and CT scans after chemotherapy with praziquantel showed an obvious improvement. There have been several reported cases of pulmonary paragonimiasis mimicking lung tumors on FDG-PET. However, all of them were suspected as primary lung tumors. To our knowledge, this patient represents the first case of paragonimiasis mimicking metastatic lung disease on FDG-PET CT imaging

    Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices

    Get PDF
    We have performed systematic investigations of transport through graphene on hexagonal boron nitride (hBN) substrates, together with confocal Raman measurements and a targeted theoretical analysis, to identify the dominant source of disorder in this system. Low-temperature transport measurements on many devices reveal a clear correlation between the carrier mobility μ\mu and the width nn^* of the resistance peak around charge neutrality, demonstrating that charge scattering and density inhomogeneities originate from the same microscopic mechanism. The study of weak-localization unambiguously shows that this mechanism is associated to a long-ranged disorder potential, and provides clear indications that random pseudo-magnetic fields due to strain are the dominant scattering source. Spatially resolved Raman spectroscopy measurements confirm the role of local strain fluctuations, since the line-width of the Raman 2D-peak --containing information of local strain fluctuations present in graphene-- correlates with the value of maximum observed mobility. The importance of strain is corroborated by a theoretical analysis of the relation between μ\mu and nn^* that shows how local strain fluctuations reproduce the experimental data at a quantitative level, with nn^* being determined by the scalar deformation potential and μ\mu by the random pseudo-magnetic field (consistently with the conclusion drawn from the analysis of weak-localization). Throughout our study, we compare the behavior of devices on hBN substrates to that of devices on SiO2_2 and SrTiO3_3, and find that all conclusions drawn for the case of hBN are compatible with the observations made on these other materials. These observations suggest that random strain fluctuations are the dominant source of disorder for high-quality graphene on many different substrates, and not only on hexagonal boron nitride.Comment: 14 pages, 6 figures, To appear in Physical Review

    Cigarette Smoking-Induced Acute Eosinophilic Pneumonia: A Case Report Including a Provocation Test

    Get PDF
    The mechanism and cause of acute eosinophilic pneumonia are largely unknown. Many factors including the smoking of cigarettes have been suggested, but none have been proven to directly cause acute eosinophilic pneumonia. The authors report a case of acute eosinophilic pneumonia in a young Asian male who recently started smoking. The diagnosis was made based on his clinical course and results of chest radiography, lung spirometry, bronchoalveolar lavage, and transbronchial lung biopsies. After administration of methylprednisolone, his clinical course rapidly improved. A provocation test was designed to establish a connection between cigarette smoking and the development of acute eosinophilic pneumonia. After the provocation test, the patient showed identical symptoms, increase in sputum eosinophils, and worsening of pulmonary function. The results of the provocation test suggest that smoking may directly cause acute eosinophilic pneumonia, and support previous reports of cigarette smoking-induced acute eosinophilic pneumonia

    Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene

    Get PDF
    We investigate electronic transport in high mobility (\textgreater 100,000 cm2^2/V\cdots) trilayer graphene devices on hexagonal boron nitride, which enables the observation of Shubnikov-de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau level crossings, whose magnetic field and filling factor coordinates enable the direct determination of the Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar electronic structure of trilayer graphene. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds indicating the existence of broken-symmetry quantum Hall states.Comment: Supplementary Information at http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd

    Crystal structure of (1R,2R)-trans-1,2-cyclohexanedicarhoxylic acid-(R)- 1-phenylethylamine salt

    Get PDF
    金沢大学大学院自然科学研究科先端機能物質金沢大学工学

    Multicomponent fractional quantum Hall effect in graphene

    Full text link
    We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be explained by strongly interacting composite Fermions with full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured from temperature dependent transport to be up 10 times larger than in any other semiconductor system. The remarkable strength and unusual hierarcy of the FQHE described here provides a unique opportunity to probe correlated behavior in the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure

    Polarization characteristics of phase retardation defect mode lasing in polymeric cholesteric liquid crystals

    Get PDF
    We have studied the lasing characteristics of a dye-doped nematic layer sandwiched by two polymeric cholesteric liquid crystal (CLC) films as photonic band gap (PBG) materials. The nematic layer acts as a defect layer, the anisotropy of which brings about the following remarkable optical characteristics: (1) reflectance in the PBG region exceeds 50% due to the retardation effect, being unpredictable from a single CLC film; (2) efficient lasing occurs either at the defect mode wavelength or at the photonic band edge; and (3) the lasing emission due to both the defect mode and the photonic band edge mode contains both right- and left-circular polarizations, while the lasing emission from a dye-doped single CLC layer with a left-handed helix is left-circularly polarized.open2
    corecore