94 research outputs found

    IL-17A/F-Signaling Does Not Contribute to the Initial Phase of Mucosal Inflammation Triggered by S. Typhimurium

    Get PDF
    Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium) causes diarrhea and acute inflammation of the intestinal mucosa. The pro-inflammatory cytokines IL-17A and IL-17F are strongly induced in the infected mucosa but their contribution in driving the tissue inflammation is not understood. We have used the streptomycin mouse model to analyze the role of IL-17A and IL-17F and their cognate receptor IL-17RA in S. Typhimurium enterocolitis. Neutralization of IL-17A and IL-17F did not affect mucosal inflammation triggered by infection or spread of S. Typhimurium to systemic sites by 48 h p.i. Similarly, Il17raβˆ’/βˆ’ mice did not display any reduction in infection or inflammation by 12 h p.i. The same results were obtained using S. Typhimurium variants infecting via the TTSS1 type III secretion system, the TTSS1 effector SipA or the TTSS1 effector SopE. Moreover, the expression pattern of 45 genes encoding chemokines/cytokines (including CXCL1, CXCL2, IL-17A, IL-17F, IL-1Ξ±, IL-1Ξ², IFNΞ³, CXCL-10, CXCL-9, IL-6, CCL3, CCL4) and antibacterial molecules was not affected by Il17ra deficiency by 12 h p.i. Thus, in spite of the strong increase in Il17a/Il17f mRNA in the infected mucosa, IL-17RA signaling seems to be dispensable for eliciting the acute disease. Future work will have to address whether this is attributable to redundancy in the cytokine signaling network

    Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust

    Get PDF
    BACKGROUND: In mice, the cytokine interleukin (IL)-17A causes a local accumulation of neutrophils within the bronchoalveolar space. IL-17A may thereby also contribute to an increased local proteolytic burden. In the current study, we determined whether mRNA for IL-17A is elevated and protein expression of IL-17A occurs locally in inflammatory cells within the human bronchoalveolar space during severe inflammation caused by organic dust. We also assessed the expression of the elastinolytic protease MMP-9 in this airway compartment. METHODS: Six healthy, non-smoking human volunteers were exposed to organic dust in a swine confinement, a potent stimulus of neutrophil accumulation within the human bronchoalveolar space. Bronchoalveolar lavage (BAL) fluid was harvested 2 weeks before and 24 hours after the exposure and total and differential counts were conducted for inflammatory BAL cells. Messenger RNA for IL-17A was measured using reverse transcript polymerase chain reaction-enzyme linked immunoassay (RT-PCR-ELISA). Intracellular immunoreactivity (IR) for IL-17A and MMP-9, respectively, was determined in BAL cells. RESULTS: The exposure to organic dust caused more than a forty-fold increase of mRNA for IL-17A in BAL cells. IL-17A immunoreactivity was detected mainly in BAL lymphocytes, and the number of these IL-17A expressing lymphocytes displayed an eight-fold increase, even though not statistically significant. The increase in IL-17A mRNA was associated with a substantial increase of the number of BAL neutrophils expressing MMP-9 immunoreactivity. CONCLUSION: Exposure to organic dust increases local IL-17A mRNA and because there is intracellular expression in BAL lymphocytes, this suggests that IL-17A protein can originate from lymphocytes within the human bronchoalveolar space. The fact that the increased IL-17A mRNA is associated with an increased number of MMP-9-expressing neutrophils is compatible with IL-17A increasing the local proteolytic burden through its neutrophil-accumulating effect

    Screening and brief interventions for hazardous and harmful alcohol use among patients with active tuberculosis attending primary care clinics in South Africa: a cluster randomized controlled trial protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2008 the World Health Organization (WHO) reported that South Africa had the highest tuberculosis (TB) incidence in the world. This high incidence rate is linked to a number of factors, including HIV co-infection and alcohol use disorders. The diagnosis and treatment package for TB and HIV co-infection is relatively well established in South Africa. However, because alcohol use disorders may present more insidiously, making it difficult to diagnose, those patients with active TB and misusing alcohol are not easily cured from TB. With this in mind, the primary purpose of this cluster randomized controlled trial is to provide screening for alcohol misuse and to test the efficacy of brief interventions in reducing alcohol intake in those patients with active TB found to be misusing alcohol in primary health care clinics in three provinces in South Africa.</p> <p>Methods/Design</p> <p>Within each of the three selected health districts with the highest TB burden in South Africa, 14 primary health care clinics with the highest TB caseloads will be selected. Those agreeing to participate will be stratified according to TB treatment caseload and the type of facility (clinic or community health centre). Within strata from 14 primary care facilities, 7 will be randomly selected into intervention and 7 to control study clinics (42 clinics, 21 intervention clinics and 21 control clinics). At the clinic level systematic sampling will be used to recruit newly diagnosed TB patients. Those consenting will be screened for alcohol misuse using the AUDIT. Patients who screen positive for alcohol misuse over a 6-month period will be given either a brief intervention based on the Information-Motivation-Behavioural Skills (IMB) Model or an alcohol use health education leaflet.</p> <p>A total sample size of 520 is expected.</p> <p>Discussion</p> <p>The trial will evaluate the impact of alcohol screening and brief interventions for patients with active TB in primary care settings in South Africa. The findings will impact public health and will enable the health ministry to formulate policy related to comprehensive treatment for TB and alcohol misuse, which will result in reduction in alcohol use and ultimately improve the TB cure rates.</p> <p>Trial registration number</p> <p>PACTR: <a href="http://apps.who.int/trialsearch/trial.aspx?trialid=PACTR201105000297151">PACTR201105000297151</a></p

    Intranasal Delivery of Cholera Toxin Induces Th17-Dominated T-Cell Response to Bystander Antigens

    Get PDF
    Cholera toxin (CT) is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2) response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses

    Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    Get PDF
    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, Ξ³Ξ΄ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections

    IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection

    Get PDF
    Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naΓ―ve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    Quantitative RT-PCR profiling of the Rabbit Immune Response: Assessment of Acute Shigella flexneri Infection

    Get PDF
    Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions

    Th17 Cells and IL-17 in Protective Immunity to Vaginal Candidiasis

    Get PDF
    Background: Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC). Methods: To monitor the course of infection we exploited a new in vivo imaging technique. Results: i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of bdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment. Conclusions: These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis
    • …
    corecore