6,209 research outputs found

    A theoretical and empirical investigation into publication of forecasts /

    Get PDF

    A Role of Swi/snf Complex in Aba-Dependent Drought Responsive Gene Expression in Arabidopsis Thaliana

    Get PDF
    The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is accompanied by increased desiccation tolerance. Postgermination ABA responses in Arabidopsis thaliana are mediated in large part by the ABA-induced basic domain/leucine zipper transcription factor ABA INSENSITIVE5 (ABI5). Here, I show that loss of function of the SWI/SNF chromatin remodeling ATPase BRAHMA (BRM) causes ABA hypersensitivity during postgermination growth arrest. ABI5 expression was derepressed in brm mutants in the absence of exogenous ABA and accumulated to high levels upon ABA sensing. This effect was likely direct; chromatin immunoprecipitation revealed BRM binding to the ABI5 locus. Moreover, loss of BRM activity led to destabilization of a nucleosome likely to repress ABI5 transcription. Genetic interaction revealed that the abi5 null mutant was epistatic to BRM in postgermination growth arrest. In addition, vegetative growth defects typical of brm mutants in the absence of ABA treatment could be partially overcome by reduction of ABA responses, and brm mutants displayed increased drought tolerance. I propose a role for BRM in the balance between growth or stress responses. Intriguingly, BRM resides at the ABI5 promoter both in the absence and presence of the stress signal. I found that BRM interacts with the core components of abscisic acid signaling transduction pathway. Moreover, the C-terminus of BRM can be phosphorylated in an ABA dependent manner in vitro. It is therefore likely that stress sensing inactivates the BRM complex to allow ABI5 upregulation

    A non-perturbative field theory approach for the Kondo effect: Emergence of an extra dimension and its implication for the holographic duality conjecture

    Get PDF
    Implementing Wilsonian renormalization group transformations in an iterative way, we develop a non-perturbative field theoretical framework, which takes into account all-loop quantum corrections organized in the 1/N1/N expansion, where NN represents the flavor number of quantum fields. The resulting classical field theory is given by an effective Landau-Ginzburg theory for a local order parameter field, which appears in one-dimensional higher spacetime. We claim that such all-loop quantum corrections are introduced into an equation of motion for the order parameter field through the evolution in the emergent extra dimension. Based on this non-perturbative theoretical framework, we solve the Kondo effect, where the quantum mechanics problem in the projective formulation is mapped into a Landau-Ginzburg field theory for the hybridization order parameter field with an emergent extra dimension. We confirm the non-perturbative nature of this field theoretical framework. Intriguingly, we show that the Wilsonian renormalization group method can explain non-perturbative thermodynamic properties of an impurity consistent with the Bethe ansatz solutions. Finally, we speculate how our non-perturbative field theoretical framework can be connected with the AdSd+2_{d+2}/CFTd+1_{d+1} duality conjecture.Comment: Completely rewritte
    corecore