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The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of
key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed
dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is
accompanied by increased desiccation tolerance. Postgermination ABA responses in Arabidopsis thaliana are
mediated in large part by the ABA-induced basic domain/leucine zipper transcription factor ABA
INSENSITIVE5 (ABI5). Here, I show that loss of function of the SWI/SNF chromatin remodeling ATPase
BRAHMA (BRM) causes ABA hypersensitivity during postgermination growth arrest. ABI5 expression was
derepressed in brm mutants in the absence of exogenous ABA and accumulated to high levels upon ABA
sensing. This effect was likely direct; chromatin immunoprecipitation revealed BRM binding to the ABI5
locus. Moreover, loss of BRM activity led to destabilization of a nucleosome likely to repress ABI5
transcription. Genetic interaction revealed that the abi5 null mutant was epistatic to BRM in postgermination
growth arrest. In addition, vegetative growth defects typical of brm mutants in the absence of ABA treatment
could be partially overcome by reduction of ABA responses, and brm mutants displayed increased drought
tolerance. I propose a role for BRM in the balance between growth or stress responses. Intriguingly, BRM
resides at the ABI5 promoter both in the absence and presence of the stress signal. I found that BRM interacts
with the core components of abscisic acid signaling transduction pathway. Moreover, the C-terminus of BRM
can be phosphorylated in an ABA dependent manner in vitro. It is therefore likely that stress sensing
inactivates the BRM complex to allow ABI5 upregulation.
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ABSTRACT 

	
  

A ROLE OF SWI/SNF COMPLEX IN ABA-DEPENDENT DROUGHT RESPONSIVE 

GENE EXPRESSION IN ARABIDOPSIS THALIANA 

Soon-Ki Han 

Doris Wagner 

The survival of plants as sessile organisms depends on their ability to cope with 

environmental challenges. Of key importance in this regard is the phytohormone abscisic 

acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in 

postgermination embryos that encounter water stress. This is accompanied by increased 

desiccation tolerance. Postgermination ABA responses in Arabidopsis thaliana are 

mediated in large part by the ABA-induced basic domain/leucine zipper transcription 

factor ABA INSENSITIVE5 (ABI5). Here, I show that loss of function of the SWI/SNF 

chromatin remodeling ATPase BRAHMA (BRM) causes ABA hypersensitivity during 

postgermination growth arrest. ABI5 expression was derepressed in brm mutants in the 

absence of exogenous ABA and accumulated to high levels upon ABA sensing. This 

effect was likely direct; chromatin immunoprecipitation revealed BRM binding to the 

ABI5 locus. Moreover, loss of BRM activity led to destabilization of a nucleosome likely 
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to repress ABI5 transcription. Genetic interaction revealed that the abi5 null mutant was 

epistatic to BRM in postgermination growth arrest. In addition, vegetative growth defects 

typical of brm mutants in the absence of ABA treatment could be partially overcome by 

reduction of ABA responses, and brm mutants displayed increased drought tolerance. I 

propose a role for BRM in the balance between growth or stress responses. Intriguingly, 

BRM resides at the ABI5 promoter both in the absence and presence of the stress signal. I 

found that BRM interacts with the core components of abscisic acid signaling 

transduction pathway. Moreover, the C-terminus of BRM can be phosphorylated in an 

ABA dependent manner in vitro. It is therefore likely that stress sensing inactivates the 

BRM complex to allow ABI5 upregulation. 
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CHAPTER 1. Introduction  

(Adapted from Han and Wagner, Journal of Experimental Botany, 2014 Jun;65(10):2785-

99. doi: 10.1093/jxb/ert403. Epub 2013 Dec 3.) 

1.1 Summary 

Plant stress can be defined “Any unfavorable condition or substance that affects or blocks 

a plant's metabolism, growth or development” (Lichtenthaler, 1998). Plants are exposed 

to a plethora of environmental stresses through their life. Drought attributable to climate 

change already causes water shortages in large parts of the world (Vorosmarty et al., 

2010). Therefore enhanced response to water deficit is an important trait for both crops 

and wild plant populations. Water is essential for plant metabolism, transport systems and 

for generating the turgor pressure that allows an upright growth habit in herbaceous 

plants (Des Marais and Juenger, 2010). It also adversely affects other aspects of plant 

growth, for example water stress reduces the rate of nitrogen fixation by legumes and 

their symbionts (Gil-Quintana et al., 2013). Due to their sessile nature, plants cannot 

escape from a water deficient habitat. They instead need to adopt special strategies to 

cope with water limitation and to avoid substantial impacts on fitness, growth and 

development (Cramer et al., 2011; Less et al., 2011). Ability of the plant to display 

tolerance to water stress depends on transcriptional reprograming (Ahuja et al., 2010; 

Shinozaki and Yamaguchi-Shinozaki, 2007). For instance, factors involved in regulation 

of stress signal transduction as well as osmolytes and proteins that protect the cell from 

damage during water stress are induced in response to water deficit (Shinozaki and 

Yamaguchi-Shinozaki, 2007). 
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In plants, water stress triggers the biosynthesis of the phytohormone abscisic acid 

(ABA) (Nambara and Marion-Poll, 2005; Xiong and Zhu, 2003), this triggers a signal 

transduction cascade that leads to stomatal closure and transcriptional reprograming 

(Umezawa et al., 2010). Increasing evidence shows that transcriptional reprograming in 

stress-responsive gene expression, proper resource allocation to growth versus stress 

responses, acclimation and long-term stress memory are at least in part attributable to 

changes in the chromatin organization (Chinnusamy et al., 2008; Gutzat and Mittelsten 

Scheid, 2012; Mirouze and Paszkowski, 2011). This is not surprising given that 

chromatin has long been viewed as the interface between the environment and the 

genome (Badeaux and Shi, 2013; Johnson and Dent, 2013; Suganuma and Workman, 

2013).  

In this chapter, I will briefly introduce water stress response during 

postgermination development, abscisic acid signal transduction pathway and key factors 

in abscisic acid response. I will review in more detail the roles of various mechanisms 

that affect chromatin organization in water stress responses, explore the link between 

water stress perception and modulation of chromatin regulator activity, and discuss 

resource allocation to diverse survival programs by chromatin regulators as well as the 

role of chromatin in transient or long-term stress memory. 

 

1.2 Water stress response during postgermination development 

When seed dormancy is broken by the appropriate environmental and endogenous cues, 

the radicle penetrates the seed coat during germination (Bewley, 1997). The newly 

germinated embryo next initiates a series of developmental changes prior to entering the 
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seedling developmental program (Bewley, 1997; Lopez-Molina et al., 2001). Most 

notably, the germinated embryo must ensure appropriate food and water supply by 

switching to autotrophic growth (photosynthesis) and by elongating the root, respectively. 

These reprogramming events occur during the first 48 h after dormancy is broken in the 

postgermination embryo and culminate with seedling establishment and onset of 

vegetative development (Lopez-Molina et al., 2001). During postgermination, the 

embryo is no longer protected by the seed coat and thus is particularly vulnerable to 

drought stress. If plants encounter water stress during this developmental window, a 

growth arrest is triggered that helps protect germinated embryos against water stress–

mediated cell and tissue damage (Lopez-Molina et al., 2001). The growth arrest and 

induction of the quiescent state involves similar signaling and response mechanisms to 

those that operate during seed development to induce desiccation tolerance and dormancy 

(Bensmihen et al., 2002; Finkelstein et al., 2008; Lopez-Molina et al., 2001; Lopez-

Molina et al., 2002). When plants sense water stress, the levels of the stress hormone 

abscisic acid (ABA) rise (Nambara and Marion-Poll, 2005; Xiong and Zhu, 2003). 

 

1.3 Abscisic acid signaling 

Abscisic acid (ABA) plays a major role in adaptive stress response in plants. Upon 

sensing of water stress, cellular ABA levels increase and lead to adaptive response such 

as stomatal closure to prevent water loss and to maintain root growth for adequate water 

supply (Cutler et al., 2010). The signal transduction pathway has recently been elucidated 

(Ma et al., 2009; Park et al., 2009). ABA sensing by START domain proteins from the 

PYR-PYL/RCAR family leads to inhibit of type2 serine/threonine protein phosphatases 
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(PP2Cs). The PP2Cs are negative regulators of ABA responses and inhibit the SNF1-

related protein kinases 2 (SnRK2) to phosphorylate and activate basic domain/ leucine 

zipper (bZIP) family transcription factors and unknown factors which leads to the 

upregulation of ABA-responsive element (ABRE)– dependent gene expression (Figure 1-

1) and ion channels for stomata closure (Cutler et al., 2010; Fujita et al., 2011; Hubbard 

et al., 2010; Raghavendra et al., 2010; Umezawa et al., 2010) to enable plant cells to 

better cope with dehydration (Cutler et al., 2010; Fujita et al., 2011). Exogenous 

application of ABA often mimics the abiotic stress responses (Fujita et al., 2011). 

 

1.4 Key factors for ABA response during postgermination development 

The first components of ABA signaling and response pathway were identified in genetic 

screens for ABA-insensitive mutants more than a quarter of a century ago (Finkelstein, 

1994; Finkelstein and Lynch, 2000; Koornneef et al., 1984; Lopez-Molina and Chua, 

2000) and include dominant (constitutively active) clade A PP2C phosphatase mutants 

(abi1, abi2 ) and recessive loss-of-function mutants of transcriptional activators 

of the ABA response (abi3, abi4 and abi5) (Finkelstein, 1994; Finkelstein and Lynch, 

2000; Koornneef et al., 1984; Lopez-Molina and Chua, 2000). Conversely, loss of 

function of these PP2Cs or gain of function of the transcription factors leads to ABA 

hypersensitivity (Brocard et al., 2002; Gosti, 1999; Kang et al., 2002; Lopez-Molina et 

al., 2001; Merlot et al., 2001; Parcy and Giraudat, 1997; Rubio et al., 2009; Soderman et 

al., 2000). 

Both ABA and the bZIP transcription factor ABI5 are important for osmotic stress 

responses during late seed maturation and for execution of the ABA-dependent growth 
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arrest prior to photosynthetic growth (Bensmihen et al., 2002; Brocard et al., 2002; 

Finkelstein and Lynch, 2000; Lopez-Molina and Chua, 2000; Lopez-Molina et al., 2001). 

ABA INSENSITIVE5 (ABI5) is also implicated in control of radicle emergence 

(germination) (Lopez-Molina et al., 2001, 2002). Loss of ABI5 function causes reduced 

ABA sensitivity, whereas ectopic expression of ABI5 enhances ABA sensitivity and 

drought resistance (Lopez-Molina et al., 2001; Brocard et al., 2002). ABI5 expression is 

the most abundant in dry seeds and decreases during postgermination development 

(Finkelstein et al., 2005; Lopez-Molina and Chua, 2000; Lopez-Molina et al., 2001). 

Although ABI5 expression is low after seedling establishment, ABI5 is induced upon 

drought sensing also during vegetative development, in an ABA signaling–dependent 

manner (Brocard et al., 2002; Gonzalez-Guzman et al., 2012; Mizoguchi et al., 2010; 

Nakashima et al., 2009; Zhu et al., 2007).  

Another key transcription factor important for establishment of desiccation 

tolerance and dormancy is the B3 domain transcription factor ABI3 (Parcy and Giraudat, 

1997). ABI3 has also been linked to regulation of germination (Nambara et al., 2000; 

Parcy et al., 1994). Importantly, ABI3 has a key role in promoting postgermination 

growth arrest under osmotic stress conditions and acts upstream of ABI5 in this process 

(Lopez-Molina et al., 2002). ABI3 is abundant in maturing and mature seeds, but ABI3 

mRNA and protein levels become undetectable upon seedling establishment (Parcy et al., 

1994; Perruc et al., 2007). ABI3 cannot be induced by ABA during vegetative 

development (Nakashima et al., 2006). 

 

1.5 Chromatin changes induced by water stress 
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Altered transcriptional responses to environmental stimuli, such as abiotic stress, have 

been linked to chromatin regulation (Chinnusamy and Zhu, 2009; Kim et al., 2010a). In 

the eukaryotic nucleus, the genome is packaged into the fundamental unit of chromatin, 

the nucleosome, which is comprised of 147 base pairs of DNA wrapped around a histone 

octamer (Luger et al., 1997). The histone octamer consists of two copies each of histones 

H2A, H2B, H3 and H4. Nucleosomal arrays are further condensed into higher-order 

chromatin structures that incorporate the linker histone H1 (Luger et al., 1997). The 

compaction of the genome in the context of chromatin physically restricts the 

accessibility of the genomic DNA to regulatory proteins such as transcription factors and 

RNA polymerase II (Petesch and Lis, 2012). Genomic DNA accessibility in the context 

of chromatin can be altered by various mechanisms including incorporation of histone 

variants, posttranslational modifications of the histones or the DNA, or non-covalent 

alteration of the positioning or occupancy of the nucleosome (Bell et al., 2011). 

In following subtopics, I will discuss each of the different mechanisms that 

increase or decrease the accessibility of the genomic DNA in the context of chromatin as 

well as the available evidence that links each mechanism to water stress responses. 

 

1.5.1 Histone modifications 

Certain amino acids of histones, for example in their N-terminal tails, are frequently 

posttranslationally modified via acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation, or ADP-ribosylation (Bannister and Kouzarides, 2011; Zentner and 

Henikoff, 2013). These modifications are dynamically established or erased by 
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specialized enzymes called ‘writers’ or ‘erasers’, respectively (Bannister and Kouzarides, 

2011). The functional outcome of these changes in histone modifications is either 

alteration of the strength of the DNA histone interaction or recruitment of non-histone 

proteins, the so called ‘readers’, to the chromatin (Bannister and Kouzarides, 2011; Patel 

and Wang, 2013; Zentner and Henikoff, 2013). 

Typically, histone acetylation is correlated with more open chromatin and hence 

more active transcription, whereas the converse is true for histone deacetylation (Zentner 

and Henikoff, 2013). By contrast, histone methylation can affect different transcriptional 

outcome, depending on the amino acid modified and the degree of modification (mono-, 

di-, tri- methylation) (Li et al., 2007). For example, H3K4 and H3K36 tri-methylation are 

found at actively transcribed genes, whereas methylation of H3K27 and H3K9 are well 

known marks for repressed loci and heterochromatin, respectively (Zentner and Henikoff, 

2013). Histone arginine residues can be methylated by protein arginine 

methyltransferases (PRMTs). Different PRMT family members can catalyze mono-

methylarginine, asymmetric di-methylarginine, and symmetric di-methylarginine that 

direct either gene activation or repression (Ahmad and Cao, 2012). 

Several reports in plant have shown that drought sensing or treatment with the 

stress hormone ABA induce changes in histone modifications (Kim et al., 2010a; Yuan et 

al., 2013). For example, a short pulse of ABA or salt stress was sufficient to induce 

global H3S10 phosphorylation and H4K14 acetylation in cultured Arabidopsis and 

tobacco cells (Sokol et al., 2007). In 15-day-old Arabidopsis seedlings, H3K9, H3K23 

and H3K27 acetylation were enriched at coding regions of drought stress-responsive 

genes after short drought treatment, which was correlated with gene activation. 



	
   8	
  

H3K4me3 enrichment with gene activation was similar to H3K9 acetylation (Kim et al., 

2008). Genome-wide analysis in 4-week-old rosette Arabidopsis leaves under 

dehydration stress revealed a modest change in H3K4me2 and H3K4me1 levels at a 

subset of known stress response genes, but the H3K4me3 abundance over gene bodies 

changed more dramatically at genes whose transcript levels increased or decreased during 

dehydration (van Dijk et al., 2010). Recent genome-wide analysis in 25-day-old rice 

seedling also uncovered a positive correlation between H3K4me3 accumulation and the 

expression levels of some of drought-responsive genes during dehydration. This 

correlation could be extended to genes involved in stress-related metabolite and 

hormone-signaling pathways (Zong et al., 2013). As changes in transcription direct 

changes in histone modifications (Zentner and Henikoff, 2013), further studies are 

needed to elucidate whether the observed alterations in posttranslational histone 

modifications are a cause or consequence of the transcriptional changes triggered by 

water stress. 

 

1.5.2 Histone (de)acetylases 

More direct evidence for a role of histone modifications in water stress responses comes 

from the studies of mutants lacking histone-modifying enzymes. Several studies from rice 

and Arabidopsis have shown that the expression of histone deacetylases is regulated by 

drought and/or ABA (Luo et al., 2012; Sridha and Wu, 2006). In Arabidopsis, the 

expression of the plant specific HD2 histone deacetylases is repressed by ABA and NaCl 

(Luo et al., 2012; Sridha and Wu, 2006). Plants overexpressing AtHD2C exhibited ABA-

hyposensitivity (Sridha and Wu, 2006), while hdc2 mutants display ABA hypersensitivity 
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during germination (Luo et al., 2012). The gene expression changes reported for these 

mutants are inconsistent with the phenotypes of mutants lacking the components of ABA 

signaling pathway (Gosti et al., 1999; Merlot et al., 2001), and may therefore be an 

indirect consequence thereof. Mutations in either one of the genes coding two RPD3-type 

histone deacetylases HDA6 and HDA19 in Arabidopsis also cause ABA hypersensitivity 

(Chen et al., 2010b; Chen and Wu, 2010; Zhou et al., 2013). Several embryonic genes 

including 7S1, LEC2, 2S2, CRA1, FUS3 and LEC1 were de-repressed in hda19 seedlings 

(Zhou et al., 2013) in agreement with a role of histone acetylation in activation of these 

genes (Ng et al., 2006). Similar phenomena were observed in HDA6-RNAi lines (Tanaka 

et al., 2008) and in wild-type plants treated with a histone deacetylase inhibitor (Tanaka 

et al., 2008). HDA19 associates with the regulatory regions of the above-mentioned 

embryonic genes (Zhou et al., 2013). It remains to be seen whether failure to directly 

repress embryonic genes is also observed during germination and whether depression of 

such genes causes the germination defects and ABA hypersensitivity of germinating 

hda19 mutants. Histone acetyltransferases (HAT) complex components were also linked 

to altered water stress responses. Loss-of-function mutant of ADA2b, a component of the 

GCN5 containing HAT complex leads to increased drought tolerance (Vlachonasios et 

al., 2011; Vlachonasios et al., 2003). It is not yet known which gene expression changes 

are directly triggered by this complex and cause the observed phenotype. 

 

1.5.3 Histone lysine methyltransferases 

Loss of function of Arabidopsis trithorax-like factor ATX1 that trimethylates histone H3 

at lysine 4 (H3K4me3) results in decreased dehydration tolerance compared to wild-type 
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seedlings. ATX1 directly regulates transcription of NCED3, which encodes a key ABA 

biosynthesis enzyme. Activation of NCED3 transcription upon dehydration or ABA 

treatment is greatly reduced in atx1 mutant, suggesting that ATX1 mediated H3K4 

methylation is required for NCED3 induction and possibly ABA accumulation by water 

stress (Ding et al., 2011). 

 Trithorax group proteins act in opposition to Polycomb group proteins (Simon 

and Kingston, 2013). H3K27me3 marks established by the Polycomb group complex 2 

(PRC2) induce a persistent silent state of the transcription of the target locus (Simon and 

Kingston, 2013). In Drosophila, Polycomb repressive complex 1 (PRC1) recognizes 

H3K27me3 and plays a role in the stable maintenance of gene repression (Simon and 

Kingston, 2013). While PRC2 complex components are conserved in plants and 

metazoans, this is not true for PRC1 complex components (Holec and Berger, 2012; 

Zheng and Chen, 2011). In barley, exogenous ABA application induced expression of 

components of the PRC2 complex such as HvE(Z) and HvFIE in seedlings (Kapazoglou 

et al., 2010). In Arabidopsis, mutations in the two EMBRYONIC FLOWER (EMF) genes 

display strikingly similar developmental defects (Aubert et al., 2001; Yoshida et al., 

2001). EMF2 is a homolog of the Su(z)12 component of the metazoan PRC2 complex. It 

is currently unclear whether EMF1 is associated with PRC1 or PRC2 function (Beh et al., 

2012; Kim et al., 2012b). The recent identification of EMF1 as a structural homolog of 

the Drosophila PRC1 complex component PSC, its ability to inhibit remodeling activity 

of SWI/SNF ATPases (Beh et al., 2012) and its ability to act as a potent repressor of 

transcription (Calonje et al., 2008) provide support for the idea that EMF1 may be 

associated with PRC1. Genome-wide expression analysis of the emf mutants revealed that 
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EMFs regulate plant hormone and stress signaling-related genes (Kim et al., 2010b). 

Both EMF1 and EMF2 directly bind to the promoter of ABI3 and expression of ABI3 and 

its targets are de-repressed in 7 and 14-day-old emf mutant seedlings (Kim et al., 2010b). 

More recently, genome-wide binding studies revealed that genes occupied by EMF1 and 

marked by H3K27me are significantly enriched for Gene Ontology terms such as “ABA 

response” and “abiotic stress response” (Kim et al., 2012b). A bypass of the embryo 

lethality of the single unique PRC2 complex component, FIE, allowed assay of the gene 

expression defects and postembryonic phenotypes caused by absence of PRC2 function 

(Bouyer et al., 2011). This revealed germination defects as well as de-repression of 

embryonic genes and of positive regulators of ABA responses (Bouyer et al., 2011). 

Further evidence for a PRC-dependent role in water stress-related responses comes from 

conditional knockdown of EMF1, which led to increased salt tolerance, while removal of 

a factor with opposing (trithorax group-related) activity had the opposite phenotype 

(Carles and Fletcher, 2009; Pu et al., 2013). It remains to be determined in the latter two 

studies, which of the observed changes in gene expression are direct. Moreover, no 

evidence is available as yet that the observed changes in gene expression contribute to the 

altered water stress responses. 

 

1.5.4 Histone arginine methyltransferases 

Mutants lacking the Arabidopsis arginine methyltransferase PRMT5/SKB1 (henceforth 

referred to as PRTM5 for simplicity) which catalyzes symmetric arginine dimethylation, 

display salt and ABA hypersensitivity (Schmitz et al., 2008; Wang et al., 2007; Zhang et 

al., 2011). Low doses of exogenous ABA result in the growth arrest of germinated prmt5 



	
   12	
  

but not wild-type embryos (Zhang et al., 2011). The reported gene expression changes in 

prmt5 mutants relative to the wild type (Zhang et al., 2011) are inconsistent with the 

observed hypersensitive phenotype (Merlot et al., 2001; Rubio et al., 2009; Yoshida et 

al., 2010). Hence the reported changes in gene expression may be an indirect 

consequence of the mutant phenotype. As PRTM5 activity also regulates mRNA splicing 

(Deng et al., 2010; Zhang et al., 2011) and circadian gene expression (Hong et al., 2010; 

Sanchez et al., 2010), it will not be trivial to identify the genes, whose misexpression 

underlies the ABA hypersensitivity of prmt5. Indeed, a genetic screen for Ca2+ 

underaccumulation (cau) mutants identified an allele of prmt5 that displays increased 

drought tolerance and stomatal closure (Fu et al., 2013). The drought tolerance is at least 

in part due to de-repression of the direct PRMT5/H4Rsme2 target and calcium 

accumulation sensor CAS (Fu et al., 2013). 

In summary, mounting evidence supports the idea that post-translational 

modifications of histones are critical for correct water stress responses in plants. One of 

the biggest remaining challenges is to elucidate the causal defects that underpin the 

observed water stress-related phenotypes of mutants lacking histone-modifying enzymes. 

After identification of genes whose expression is altered in a given mutant in a manner 

consistent with the observed phenotypes, direct association of the histone-modifying 

enzyme in question with loci of interest should be tested. Coupled with expected changes 

in the histone modifications at these loci in stress and non-stress conditions in the mutant 

and wild-type background, this will allow identification of candidate direct targets of the 

histone-modifying enzyme. Subsequent genetic tests will enable elucidation of the role (if 

any) of the identified candidate direct targets in the water stress phenotypes observed in 
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mutants lacking activity of a given histone-modifying enzyme. Since loss-of-function of 

histone-modifying enzymes and other mutants that affect the chromatin organization are 

pleiotropic, it cannot be ruled out that the altered stress phenotype of constitutive mutants 

is due to secondary effects of the altered plant morphology (leaf size, stature). Phenotypic 

and molecular investigations of chromatin regulators should therefore rely as much as 

possible on inducible loss-of-function mutants. Tissue specific knockdown of chromatin 

regulators can minimize pleiotropic defects. Temporally inducible knockdown of a 

histone-modifying enzyme enables analysis of altered water stress responses shortly after 

knockdown in wild-type looking plants, significantly reducing the secondary effects 

typical of constitutive mutants. 

 

1.5.5 Histone variants 

In most organisms including Arabidopsis, there are multiple genes that code for the 

highly conserved canonical histones (H3, H4, H2A and H2B), which are mostly 

expressed during the S phase of the cell cycle (Burgess and Zhang, 2013; Skene and 

Henikoff, 2013; Talbert and Henikoff, 2010). Other less conserved subtypes of histones 

called histone variants are expressed throughout the cell cycle (Skene and Henikoff, 

2013; Talbert and Henikoff, 2010). The canonical histones are replaced with histone 

variants independent of DNA replication. Although they generally do not differ much in 

sequence from the canonical histones, histone variants can impart distinct characteristics 

to the nucleosomes, such as stronger or weaker association with the genomic DNA and 

incompatibility with certain post-translational modifications (Skene and Henikoff, 2013; 

Talbert and Henikoff, 2010). Recent genome-wide studies have revealed the genomic 
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distribution of a subset of the plant histone variants (Costas et al., 2011; Skene and 

Henikoff, 2013; Talbert and Henikoff, 2010; Wollmann et al., 2012; Zilberman et al., 

2008). 

In plants, linker histone (H1) variants have been linked to water stress response. 

The linker histone variant HIS1-3 gene in Arabidopsis is specifically induced by salt, 

drought and ABA (Ascenzi and Gantt, 1997; Zhu et al., 2012). Similarly, the tomato 

linker histone variant H1-S gene is also induced by and accumulates in the chromatin in 

response to water deficit (Scippa et al., 2000). H1-S also accumulates in a drought-

tolerant genotype of tomato (Trivedi et al., 2012). Indeed, knockdown of H1-S levels by 

antisense in transgenic tomato triggered altered physiological response to water loss such 

as altered stomatal conductance, transpiration and net photosynthetic rate (Scippa et al., 

2004). Transgenic plants showed an increased association of the heterochromatin with the 

nuclear membrane under water stress condition (Scippa et al., 2004), this may trigger 

increased silencing of these regions (Hubner et al., 2013). Although up-regulation of 

expression of variants of the linker histone H1 in response to drought is a conserved 

response in higher plants, detailed mechanistic insight into how this histone variant 

affects chromatin structure or gene expression during water stress is as yet not available. 

The H2A variant H2A.Z is largely conserved through evolution (Talbert and Henikoff, 

2010). Genome-wide studies revealed that the localization of H2A.Z inversely correlates 

with DNA methylation in both heterochromatin and in gene bodies of active genes 

(Zilberman et al., 2008). It has been proposed that the anti-correlation between H2A.Z 

and DNA methylation is primarily due to the exclusion of H2A.Z from methylated DNA 

(Coleman-Derr and Zilberman, 2012). Moreover, Gene Ontology terms enriched among 
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genes up-regulated in h2a.z triple mutants include “Response to water deprivation” and 

“Response to ABA” (Coleman-Derr and Zilberman, 2012). The authors propose that 

H2A.Z deposition in gene bodies confers higher variability in the expression of inducible 

genes including those that respond to water stress. By contrast, gene-body DNA 

methylation may stabilize constitutive expression of housekeeping genes by antagonizing 

H2A.Z deposition (Coleman-Derr and Zilberman, 2012). It will be of interest to 

determine the effect of reduced availability or incorporation of these and additional 

histone variants on water stress responses in plants. Given their widespread roles in 

chromatin stability, conditional disruption of histone variant availability or incorporation 

may allow more precise investigation of such phenotypes. 

 

1.5.6 DNA methylation 

Methylation on the fifth carbon of cytosine bases is an important epigenetic mark that 

influences chromatin structure and gene expression (Jones, 2012). In plants, cytosine 

methylation is found in the context of CG, CHG and CHH (H=A, C or T). Symmetric CG 

maintenance methylation is catalyzed by DNA Methyltransferase I (MET1), a homolog 

of the mammalian methyltransferase Dnmt1 (Chan et al., 2005; Goll and Bestor, 2005; 

Law and Jacobsen, 2010). Symmetric CHG maintenance methylation is catalyzed by 

Chromomethyltransferase 3 (CMT3), a plant specific methyltransferase. Asymmetric 

CHH methylation is maintained through de novo methylation by Domains Rearranged 

Methyltransferase 2 (DRM2), a homolog of the mammalian Dnmt3a/b and the RNA-

directed DNA methylation (RdDM) pathway (Chan et al., 2005; Goll and Bestor, 2005; 

Law and Jacobsen, 2010). DDM1 is a SWI/SNF superfamily chromatin remodeler 
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required for all DNA methylation (CG, CHG, CHH) over long transposable elements 

(TEs) and in heterochromatin (Vongs et al., 1993). DDM1 was recently shown to 

cooperate with the CMT2 methyltransferase to mediate CHH DNA methylation in 

parallel with the RdDM pathway (Zemach et al., 2013). 

In Arabidopsis, centromeric and pericentromeric regions, repetitive DNA 

sequences and transposons are heavily methylated. Many genic regions are also highly 

methylated, this is correlated with high gene expression, whereas promoters are mostly 

depleted of DNA methylation (Saze et al., 2012; Zhang et al., 2006). In plants, DNA 

methylation is associated with diverse biological processes including development and 

environmental responses (Law and Jacobsen, 2010; Sahu et al., 2013; Saze et al., 2012). 

Studies from various plant species showed that abiotic stress may trigger hyper- 

or hypomethylation at different genomic contexts; hypo-methylation of promoters, hyper- 

or hypo methylation at coding regions and hypo-methylation of transposons (Sahu et al., 

2013). For example, genome-wide analysis identified differentially methylated DNA 

regions in Arabidopsis seedlings treated with simulated drought (treatment with 

Polyethylene glycol). The methylome was widely affected by changes in the water 

potential, with the most dramatic DNA hypermethylation observed near the TSS (± 

500bp) of protein coding genes related to stress responses (Colaneri and Jones, 2013). 

Moreover, it has been proposed that DNA methylation may contribute to stress 

adaptation. Mangrove trees grown near a salt march had smaller statures than riverside 

grown trees and their genomes were globally hypo-methylated (Lira-Medeiros et al., 

2010). Likewise, in rice, changes in DNA methylation in response to drought were more 

pronounced in drought-tolerant genotypes (Wang et al., 2011b). The altered DNA 
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methylation may contribute to increased differential gene expression upon drought 

sensing. A subset of the DNA methylation changes induced by drought remained after 

removal of the stress (Wang et al., 2011b). In Arabidopsis, low relative humidity was 

linked to de novo DNA methylation and stable repression of genes involved in stomata 

development, resulting in lower stomata frequency (Tricker et al., 2012; Tricker et al., 

2013). A T-DNA insertion distal to the AtHKT1 gene, which encodes a sodium 

transporter, has been identified as a suppressor of sos3 (salt overly sensitive 3). The 

insertion prevents a distal enhancer element and RdDM from controlling expression of 

AtHKT1, which plays an important role in salt tolerance (Baek et al., 2011). met1-3 

mutants and met1-3 derived epiRILs show normal germination in non-stress condition, by 

contrast they fail to germinate in the presence of 150mM NaCl, a concentration that does 

not impact germination in the wild type (Reinders et al., 2009). Defects in DNA 

methylation may thus affect phenotypic plasticity (a topic that has received attention from 

an evolutionary perspective) in response to adverse environmental conditions (Draghi and 

Whitlock, 2012; Lira-Medeiros et al., 2010; Wang et al., 2011b). It will be critical to 

identify which of the observed DNA methylation changes contribute to altered water 

stress response or plasticity. 

 

1.5.7 Non-covalent changes in chromatin state 

ATP-dependent chromatin remodeling ATPases alter histone–DNA interactions non-

covalently by utilizing the energy derived from ATP hydrolysis to promote changes in 

nucleosome occupancy, nucleosome positioning or nucleosome composition (Cairns, 

2009; Hargreaves and Crabtree, 2011; Narlikar et al., 2013). Chromatin remodeling can 
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either increase or decrease the accessibility of a given piece of genomic DNA to trans 

factors and hence facilitate or obstruct transcription, respectively (Cairns, 2009; 

Hargreaves and Crabtree, 2011; Narlikar et al., 2013). Four well-studied subfamilies of 

ATP-dependent chromatin remodelers are the SWI/SNF, ISWI, CHD and INO80/SWR1 

families. Each subfamily has unique domains, which endow it with specialized function 

for particular nuclear processes (Cairns, 2009; Hargreaves and Crabtree, 2011; Narlikar 

et al., 2013). Among these ATP-dependent chromatin remodelers, only the SWI/SNF and 

CHD subgroups have been implicated in water stress responses in plants. 

SWI/SNF ATPases are conserved from yeast to humans and plants (Flaus et al., 

2006; Hu et al., 2013; Kwon and Wagner, 2007; Narlikar et al., 2013). Plant genomes 

contain three types of SWI/SNF subfamily chromatin remodeling ATPases called 

BRAHMA (BRM), SPLAYED (SYD), and MINUSCULE (MINU) (Jerzmanowski, 

2007; Kwon and Wagner, 2007; Sang et al., 2012). The catalytic ATPase subunit forms a 

core complex together with SWIRM- and SANT- domain proteins (SWI3) and SNF5-

domain proteins. Additional accessary proteins, which are frequently tissue- and 

developmental-stage specific, control targeting and activity of the complex (Clapier and 

Cairns, 2009; Hargreaves and Crabtree, 2011; Kwon and Wagner, 2007). In vitro 

remodeling activity has not yet been demonstrated for members of this subfamily in 

plants. In Arabidopsis, the BRM complex containing SWI3C and SNF5 (BSH) has been 

linked to ABA and drought response (Han et al., 2012). Germinating brm mutants display 

ABA hypersensitivity and enhanced growth arrest relative to the wild type. Consistent 

with the mutant phenotype, derepression of the positive ABA response regulator ABI5 

(Lopez-Molina et al., 2001) was observed (Han et al., 2012). ABI5 is a direct BRM target 
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and based on genetic epistasis tests, the brm mutant growth arrest is due to the ABI5 de-

repression (Han et al., 2012). BRM repressed ABI5 expression in the absence of stress by 

promoting high occupancy of the +1 nucleosome close to the ABI5 transcription start site 

(Han et al., 2012). In addition, brm mutants displayed increased drought tolerance at 

multiple stages of development. The molecular underpinnings of this response remain to 

be elucidated (Han et al., 2012). The MINU1/AtCHR12 ATPase (henceforth referred to 

as MINU1 for simplicity) has been implicated as a negative regulator of a temporary 

growth arrest caused by drought and heat stress in adult Arabidopsis plants (Mlynarova et 

al., 2007). Overexpression of MINU1 induces temporary growth arrest under drought as 

well as salt and heat stress (Mlynarova et al., 2007). Intriguingly, the expression of 

several stress-inducible dormancy-related genes was reduced in the inflorescence and 4-

week-old rosette leaves of MINU1 knock out and increased in MINU1 overexpressing 

plant. While it is not yet known whether these genes are directly regulated by MINU1 or 

responsible for the observed phenotypic defects, MINU1 may play a role in the induction 

of stress response genes upon perception of the stimulus. 

The CHD subgroup chromatin remodeler PKL has also been implicated in ABA 

response. CHD chromatin remodelers have two tandem chromodomains known to bind 

methylated lysines, these domains were recently shown to couple ATP hydrolysis to 

remodeling (Hauk et al., 2010). Like SWI/SNF ATPases, CHD remodelers can both 

promote and repress transcription. The vertebrate Mi2-NuRD complex contains histone 

deacetylase and methyl CpG-binding domain (MBD) proteins in addition to a CHD 

domain chromatin remodeler (Clapier and Cairns, 2009). PKL is the best-characterized 

CHD remodeler in Arabidopsis and most closely resembles CHD3. Recently, in vitro 
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chromatin remodeling activity was demonstrated for PKL (Ho et al., 2013). PKL is 

required for repression of embryonic genes during seedling development and promotes 

the developmental transition to vegetative growth (Henderson et al., 2004). pkl mutants 

display exaggerated ABA responses during germination, and fail to germinate in 

conditions where wild type germinates properly (Perruc et al., 2007). The ABA-

dependent growth arrest of geminating pkl plants is mainly mediated by failure to 

developmentally repress genes strongly expressed during embryogenesis, including ABI3 

and ABI5. Increased expression of ABI3 and ABI5 in pkl mutants relative to the wild type 

in the presence of ABA treatment is correlated with reduced levels of two repressive 

histone modifications, H3K9me2 and H3K27me2 at the promoters of these genes (Perruc 

et al., 2007). Epistasis test revealed nearly abi5 like germination and growth responses in 

pkl abi5 double mutants, suggesting that the majority of the phenotypic defects can be 

explained by failure to repress ABI5. It is not known whether ABI5 is directly regulated 

by PKL. Elucidation of the direct PKL targets is critical, as there is currently evidence for 

PKL acting both as a trithorax group protein (to counteract Polycomb repression) and as a 

promoter of Polycomb repression (Aichinger et al., 2009; Jing et al., 2013; Zhang et al., 

2012). 

 

1.6 Tradeoffs between growth and water stress responses 

Although the underlying mechanisms are largely unknown, growth arrest in adverse 

environments is thought to be advantageous for plant survival (Achard et al., 2006; 

Lopez-Molina et al., 2001; Skirycz and Inze, 2010). One hypothesis is that limited 

resources available to monocarpic (annual) plants in particular can either be allocated to 
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stress response or to continued growth (Bennett et al., 2012). In support of this idea, 

ABA and drought stress not only induce expression of stress response genes, but also 

represses expression of genes linked to growth and metabolism (Chaves et al., 2009; 

Shinozaki and Yamaguchi-Shinozaki, 2007; Sreenivasulu et al., 2012). In addition, when 

major drought-responsive transcription factors are overexpressed, transgenic plants 

display growth retardation in non-drought conditions (Shinozaki and Yamaguchi-

Shinozaki, 2007). In conditions when the stress does not threaten survival, growth 

inhibition may lead to an unnecessary reduction in plant growth and hence productivity 

and yield (Bennett et al., 2012; Tardieu, 2003). 

Consistent with the hypothesized tradeoff between growth and drought response 

several chromatin regulators have been implicated in stress-mediated temporal growth 

arrest at different stages of plant development. A highly dehydration sensitive 

developmental phase in the life of a plant is immediately after germination (Lopez-

Molina et al., 2001). Several chromatin regulators act at this stage to trigger water stress-

dependent growth arrest, which resembles the growth arrest during late-embryogenesis in 

seed development. In several cases, the hyperactive stress response is due to a delay or 

failure to repress the embryonic developmental program (which is geared towards 

desiccation tolerance and growth arrest) upon germination. 

One example of this type of regulator is PKL. Hypersensitive germination 

response to ABA of pkl mutants is due to failure to developmentally repress ABI3 and 

ABI5 accumulation and is restored by removing ABI5 function (Perruc et al., 2007). 

Other embryonic genes such as LEC1, LEC2, FUS3 are constitutively de-repressed and 

cause formation of embryonic structures on adult pkl mutant plants (Aichinger et al., 
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2009; Dean Rider et al., 2003; Henderson et al., 2004). Likewise, a delay in the 

developmental repression of the embryonic program is observed under conditions of 

reduced histone deacetylase activity (Tanaka et al., 2008). Double mutants between pkl 

and histone deacetylase hda6 enhanced persistence of embryonic traits and embryonic 

gene expression (Tanaka et al., 2008). Polycomb group protein and 

RETINOBLASTOMA -RELATED protein (RBR) are also required for persistent 

silencing of late embryonic genes including ABI3 by increasing their histone H3K27 

trimethylation (Bouyer et al., 2011; Gutzat et al., 2011; Kim et al., 2010b; Yang et al., 

2013). Although the role of RBR in abiotic stress response has not been investigated, 

seedlings with reduced RBR function arrest their growth after germination in non-stress 

conditions; this is accompanied by de-repression of embryonic genes linked to ABA 

responses including ABI3 and ABI5 (Gutzat et al., 2011). 

The SWI/SNF ATPase BRM, by contrast, displayed normal developmental down-

regulation of embryonic genes (ABI3, ABI5) at the onset of autotrophic growth and was  

instead required for repressing expression of positive regulators of water stress responses 

in the absence of the stimulus (Han et al., 2012). Moreover, the overall reduced 

vegetative growth of brm mutants under non-stress conditions is partly restored by 

removing ABI5 function or by disturbing ABA signaling pathway. However, a role for 

BRM in repression of the embryonic program cannot be entirely rule out. Several 

embryonic genes were expressed in mutants lacking BRM and its close homolog 

SPLAYED based on transcriptome studies (Bezhani et al., 2007). However, the 

expression of key embryogenesis regulators such as ABI3, LEC1 and LEC2 was either not 

changed or only marginally up-regulated (FUS3) in adult brm hypomorph mutants (Tang 
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et al., 2008). The SWI/SNF ATPase MINU1 is thought to be required for induction of 

stress-inducible genes that mediate growth arrest under abiotic stress, although direct 

targets of MINU1 remain to be identified (Mlynarova et al., 2007). 

Taken together, these studies highlight a role for chromatin modifying and 

remodeling enzymes at the nexus of growth versus stress response pathways, both via 

modulation of developmental programs and via enabling proper stimulus–dependent 

changes in gene expression. 

 

1.7 Links between stress signaling pathways and chromatin modifying or 

remodeling enzymes. 

As outlined above many chromatin changes including a change in histone variant 

incorporation, histone modifications, nucleosome occupancy or positioning or DNA 

methylation accompany stress-induced changes in gene expression. A critical question is 

how chromatin regulator activity is controlled to allow precise stimulus dependent 

changes in the accessibility of the genome. One way to achieve this may be a direct 

communication between components of the stress signal transduction pathway and 

chromatin modifying or remodeling activities. 

The question whether histones in the context of chromatin can directly receive 

and deliver signals from cellular signal transduction cascades to facilitate specific cellular 

responses has recently received much attention (Badeaux and Shi, 2013; Johnson and 

Dent, 2013; Suganuma and Workman, 2013). Another intersection between cellular 

signal transduction and chromatin is indirectly through posttranslational modifications of 

chromatin modifying or remodeling enzymes (Badeaux and Shi, 2013). Studies in 



	
   24	
  

mammals revealed that histone and DNA methyltransferases are directly phosphorylated 

by a downstream component of phosphoinositide signaling, the AKT kinase (Cha et al., 

2005; Esteve et al., 2011). Likewise SWI/SNF chromatin remodelers have been shown to 

be phosphorylated by p38 (Simone et al., 2004) as well as acetylated (Bourachot et al., 

2003) and SUMOylated upon signal perception (Galisson et al., 2011). 

Signaling transduction by SnRK2 kinases and PP2C phosphatases plays an 

important role in coordinating whole plant water stress responses. Calcium-dependent 

protein kinases (CDPKs) are also critical for proper water stress response, ABA signaling 

and reduction of reactive oxygen species (ROS) accumulation (Asano et al., 2012), while 

the inositol polyphosphate 1-phosphatase FIERY1 acts a negative regulator of ABA and 

stress signaling (Xiong et al., 2001). Thus far there is no report that links these signaling 

components directly to the chromatin. However links between other signal transducers 

and chromatin regulators have been identified. The clade A PP2C phosphatases, 

Hypersensitive to ABA 1 (HAB1) physically interacts with SWI3B, a core subunit of the 

putative Arabidopsis SWI/SNF complex. HAB1 is recruited to ABA response genes, this 

recruitment is abrogated upon ABA treatment (Saez et al., 2008). HAB1 may perhaps 

directly de-phosphorylate SWI/SNF complexes containing SWI3B in an ABA dependent 

manner. In agreement with this idea, recent phosphoproteomics analyses performed by 

the Zhu and Shinozaki labs revealed that several chromatin regulators, including the 

BRM SWI/SNF ATPase, are substrates of SnRK2 type kinases in the ABA response 

pathway (Umezawa et al., 2013; Wang et al., 2013). Whether the observed 

phosphorylation/ de-phosphorylation of SWI3B or BRM by SnRK2 kinases/ PP2C 

phosphatases modulates SWI/SNF complex activity remains unknown. The Arabidopsis 
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Trithorax-like protein and histone H3 lysine 4 methyltransferase ATX1 (Alvarez-

Venegas and Avramova, 2005), is involved in dehydration response in both ABA 

dependent and ABA independent pathways (Ding et al., 2011). Intriguingly, ATX1 also 

directly interacts with phosphatidylinositol (Ptdlns5P), this negatively influences the 

ATX1 activity (Ndamukong et al., 2010). Dehydration stress increases accumulation of 

phosphatidylinositol, a precursor of secondary messengers in stress signaling 

(Ndamukong et al., 2010). An increase in the cellular levels of Ptdlns5P keeps ATX1 in 

the cytoplasm thereby diminishing ATX1 binding to target genes linked to proper water 

stress responses (Ndamukong et al., 2010). The phosphoproteomics studies mentioned 

above identified additional chromatin regulators as phosphorylated upon dehydration or 

ABA treatment in a SnRK2 kinase-dependent manner (Umezawa et al., 2013; Wang et 

al., 2013). Although there was little overlap between the phosphorylated peptides 

identified in the two studies, chromatin associated proteins identified include putative 

components of HDAC complexes (eg. SIN3-like 2, HD2B), HAT complexes (eg. SNS1; 

Eaf7 superfamily), histone methyltransferases (eg. ATXR2, SDG2), chromatin 

remodeling ATPases (eg. CHR2/BRM, CHR5/CHD1) and Nucleolin like 1, a nucleolar 

protein linked to rRNA gene methylation and expression (Umezawa et al., 2013; Wang et 

al., 2013). In addition, the Arabidopsis histone acetyltransferase GCN5 was shown to 

specifically interact with PP2C6.6, a clade E PP2C with no visible mutant phenotype. 

GCN5 is dephosphorylated by PP2C6.6 in vitro and loss of PP2C6.6 activity induces 

GCN5-mediated histone acetylation (Servet et al., 2008). A possible link to water stress 

responses is supported by the reported expression of PP2C6.6 in guard cells (Galbiati et 

al., 2008). 
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The possibility that chromatin regulator activity is modulated upon stress sensing 

is intriguing vis-à-vis the question how these factors can execute specific roles in the 

organism. It is furthermore of practical significance. As chromatin regulators broadly 

alter the stress-inducible transcriptome they may be able to direct tolerance not only to a 

unique stress but to combinations of stresses that are frequently encountered in the field 

(Mittler and Blumwald, 2010; Yang et al., 2010). Ability to precisely modulate the 

activity of chromatin regulators – via targeted post-translational modifications for 

example- should allow utilization of their broad reprograming capacity while minimizing 

detrimental effects on growth or yield. 

 

1.8 Stress-induced transient or long-term epigenetic memory 

In higher plant, stress memory phenomena known as “priming” or “acclimation” have 

been described (Bruce et al., 2007; Conrath, 2011). Pre-exposure to mild stimuli can 

make plants more stress resistant and boost responses to recurring stress exposure. Well-

known examples of priming are seed priming to enhance germination efficiency and crop 

yield, temperature acclimation and systemic acquired resistance (Bruce et al., 2007; 

Conrath, 2011; Gutzat and Mittelsten Scheid, 2012). One mechanism proposed for long-

term ‘storage’ of the stress memory is a mitotically heritable, or epigenetic, change in the 

chromatin organization. Another could conceivably rely instead on posttranslational 

modification of chromatin regulators. Epigenetic “Stress memory” could be maintained 

during subsequent development within the life span of the organism that experienced the 

priming stress in “somatic memory” or might perhaps even be transmitted to the progeny 
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across generations in “transgenerational inheritance”, a meiotically heritable change in 

the chromatin organization. 

Unlike the mitotically heritable response to prolonged cold (Song et al., 2012; 

Zografos and Sung, 2012), the mechanisms underlying long-term somatic stress memory 

are not well understood. Previous studies have shown that histone tail modifications such 

as H3 acetylation or H3K4 methylation occur at drought-responsive genes upon drought 

sensing, and correlate with active transcription of dehydration response genes (Kim et al., 

2008). However, drought-induced H3K9Ac marks and RNA polymerase II occupancy 

rapidly declined upon rehydration (Kim et al., 2012a). By contrast, H3K4me3 decreased 

much more gradually during a five-hour rehydration period (Kim et al., 2012a), 

suggesting that H3K4me3 could be a mitotically heritable epigenetic mark for water 

stress memory. In accordance with this study, another group proposed that H3K4me3 and 

stalled RNA polymerase II (PolII Ser5P) could function in mitotic stress memory (Ding 

et al., 2011). Recurrent dehydration induces a higher rate of expression of dehydration 

response genes such as RD29B and RAB18 than primary dehydration. This is 

accompanied by higher H3K4me3 and Ser5P PolII accumulation at these loci (Ding et 

al., 2011). During rehydration, the RD29B and RAB18 transcript levels revert to basal 

expression, but H3K4me3 and Ser5p PolII association with both loci remain elevated. 

The observed stress memory endured until 5 days after recovery (Ding et al., 2011). 

Likewise, H3K4 hypermethylation mediated by the Set1 histone methyltransferase in 

Saccharomyces cervisiae was proposed to provide molecular memory of recent 

transcriptional events (Ng et al., 2003). It was suggested that elevated H3K4 

trimethylation is important for genes to be rapidly switched on and off by environmental 
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stimuli and that it acts to prevent the associated genes from being silenced (Ng et al., 

2003). The combined data suggests presence of a conserved mechanism for stress 

memory in metazoans. 

One of the main difficulties in monitoring epigenetic profiles for long-term stress 

memory are confounding epigenetic changes caused by altered plant growth and 

development in stress challenged plants. Another challenge is determining the period for 

which plants can ‘remember’ the priming event. Enhanced response to the second 

treatment shortly after the primary treatment could result from ‘left over’ proteins and 

metabolites that were induced by the first stress treatment. Recently, Sani et al., 2013 

developed an experimental protocol to monitor epigenetic profiles, which aims to avoid 

these problems. They showed that a mild transient salt treatment of young Arabidopsis 

seedlings establishes long-term somatic memory. This was accompanied by specific 

changes in the H3K27me3 profile, which remained after a 10-days of subsequent growth, 

and resulted in drought/ high salt tolerance priming in the pre-treated plants without 

morphological difference between primed and non-primed adult plants (Sani et al., 2013). 

Interestingly, H3K4me3 is generated by a methyltransferase that belongs to the 

Trithorax Group of proteins (TrxG), while H3K27 is trimethylated by the PRC2 complex 

of Polycomb Group proteins (PcG). Recently several elegant in vitro and in vivo studies 

have shown that mitotic epigenetic inheritance of methylation at H3K4 and H3K27, 

which have been linked to stress memory in plants (above), may be mediated by the 

continued presence of TrxG and PcG proteins at the replication fork and on mitotic 

chromatin (Follmer et al., 2012; Fonseca et al., 2012; Lanzuolo et al., 2011; Lengsfeld et 

al., 2012; Lo et al., 2012; Petruk et al., 2012). 
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Naturally occurring DNA methylation based epialleles and epiRILs (Epigenetic 

Recombinant Inbred Lines) generated in the laboratory are stably inherited for many 

generations in plants (Becker and Weigel, 2012; Mirouze and Paszkowski, 2011; 

Paszkowski and Grossniklaus, 2011; Roux et al., 2011; Schmitz et al., 2013; Zhang et al., 

2013). Several reports have attempted to demonstrate stress-induced epigenetic states that 

are inherited by the non-stressed progeny, so -called meiotic or transgenerational 

epigenetic inheritance (Boyko and Kovalchuk, 2011; Grossniklaus et al., 2013; Gutzat 

and Mittelsten Scheid, 2012; Hauser et al., 2011; Paszkowski and Grossniklaus, 2011). 

For example, a recent study reported salt stress-induced epigenetic inheritance of DNA 

methylation, histone modifications and gene expression (Bilichak et al., 2012). However, 

clear evidence for stress-induced chromatin modifications that are stably inherited by 

subsequent generations and contribute to phenotypic plasticity is still lacking in plants 

(Grossniklaus et al., 2013; Mirouze and Paszkowski, 2011; Pecinka and Mittelsten 

Scheid, 2012). As genetic changes –for example due to transposon activation- are also 

observed in these lines, careful assessment of the epigenetic nature of the inherited trait is 

required. Criteria to shore up more unambiguous support for epigenetic transgenerational 

stress inheritance were recently suggested and include well-controlled stress treatments 

and phenotypic analyses, a comprehensive or synoptic view of associated chromatin 

changes, establishment of causality, as well as heritability for more than 2 generations 

(Grossniklaus et al., 2013; Pecinka and Mittelsten Scheid, 2012). 

At a time when we face the twin challenges of human population growth and loss 

of arable land due to climate change, it is critical to understand the molecular 

mechanisms that regulate water stress tolerance and mitotic inheritance of stress 
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responses during priming. Evidence is mounting for a role of DNA methylation, histone 

modifications, and altered nucleosome occupancy, positioning, or composition in both 

responses. As stresses in nature do not occur in isolation (Mittler and Blumwald, 2010; 

Yang et al., 2010), it is possible that changes in chromatin organization may endow the 

plants with the ability to survive combinations of stresses and to remain primed for 

further stress responses. Challenges for the future are: (1) to elucidate which chromatin 

alterations may be instructive for altered stress responses, rather than a consequence 

thereof; (2) to understand which chromatin alterations lead to stress tolerance that is 

mitotically (or meiotically) heritable; and (3) to devise ways to modulate the activity of 

‘instructive’ chromatin regulators in ways that allow enhanced primary or heritable stress 

tolerance without causing growth or yield trade-offs. 

 

In the following three chapters, I will present the data for my thesis projects. In 

Chapter 2, I will present the role of SWI/SNF chromatin remodeling complex in water 

stress and chromatin changes triggered by ABA or loss of BRM. This chapter has been 

adapted from “The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses 

abscisic acid responses in the absence of the stress stimulus in Arabidopsis.” Han et al, 

The Plant Cell, 2012. In Chapter 3, I will present the data from investigation on the 

regulation of SWI/SNF complex activity by ABA sensing and signaling. This part is 

incomplete and substantial experiments are still needed to support proposed hypothesis. I 

have highlighted the experiments that are in progress to address unanswered questions in 

Chapter 3. In Chapter 4, I have presented discussion and future direction. 
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Figure 1-1. Core ABA signal transduction pathway in the nucleus.  

ABA receptors (PYR/PYL/RCAR), PP2C and SnRK2 form a core-signaling complex. 

ABA binds to ABA receptors (PYR/PYL/RCAR) in a ternary complex with the clade A 

PP2C phosphatases (Ma et al., 2009; Park et al., 2009), which frees the activity of 

SnRK2 kinases to phosphorylate downstream targets. ABRE/ABF-type of transcription 

factors (TFs) that induce ABA responsive gene expression are well known targets of 

SnRK2 kinases. Other substrates of SnRK2 have not been identified are marked with a 

question mark. 
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CHAPTER 2. The role of SWI/SNF chromatin remodeling in ABA dependent 

drought responses 

(Adapted from Han et al., The Plant Cell, 2012 Dec;24(12):4892-906. doi: 

10.1105/tpc.112.105114. Epub 2012 Dec 3.) 

2.1 Background 

Altered transcriptional responses to environmental stimuli, such as abiotic stress, have 

been linked to chromatin regulation (Chinnusamy and Zhu, 2009; Kim et al., 2010a). 

Chromatin mediated control of inducible gene expression is performed by two general 

types of activities. One mechanism involves enzymes that covalently modify histones 

and/or the DNA, such as histonemodifying enzymes or DNA (de)methylases (Li et al., 

2007). A second general mechanism for chromatin-mediated control of inducible gene 

expression is noncovalent alteration of the nucleosome position, occupancy, 

conformation, and composition by chromatin remodeling ATPases. Among the chromatin 

remodeling ATPases, the SWI/SNF subgroup has been studied extensively (Li et al., 

2007; Clapier and Cairns, 2009; Hargreaves and Crabtree, 2011).  

SWI/SNF subgroup ATPases are conserved from yeast to humans and plants 

(Flaus et al., 2006). Plant genomes contain three types of SWI/SNF subgroup chromatin 

remodeling ATPases, which are called BRAHMA (BRM), SPLAYED (SYD), and 

MINUSCULE (MINU) (Flaus et al., 2006; Jerzmanowski, 2007; Kwon and Wagner, 

2007; Sang et al., 2012). SWI/SNF ATPases act in large protein complexes that are 

required for full activity in vivo and use the energy derived from ATP hydrolysis to alter 

histone–DNA interactions (Clapier and Cairns, 2009; Hargreaves and Crabtree, 2011). 

SWI/SNF complexes can increase or decrease accessibility of the genomic DNA and 
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hence activate or repress transcription, respectively (Tang et al., 2008; Clapier and 

Cairns, 2009; Hargreaves and Crabtree, 2011). Selectivity of SWI/SNF activity is due to 

recruitment to target loci by sequence-specific proteins and/or regulation of complex 

activity by posttranslational modifications or complex composition (Clapier and Cairns, 

2009; Hargreaves and Crabtree, 2011).  

Constitutive activation of ABA signaling by removing negative regulators of the 

ABA pathway or by enhancing transcriptional response to ABA causes ABA 

hypersensitivity and enhanced drought tolerance (Lopez-Molina et al., 2001; Kang et al., 

2002; Fujita et al., 2005; Rubio et al., 2009). However, it also causes impaired growth 

under normal growth conditions (Kang et al., 2002; Fujita et al., 2005). This is because 

the abiotic stress responses divert resources from normal growth and development 

(Boyer, 1982; Cramer et al., 2011; Grill and Ziegler, 1998; Less et al., 2011). It is 

therefore critical that desiccation responses are repressed in non-stress conditions. Here, I 

describe a role for the Arabidopsis thaliana BRM SWI/SNF chromatin remodeling 

complex components in direct transcriptional repression of ABI5 during postgermination 

development. 

 

2.2 Results 

2.2.1 ABA responses in the mutant of SWI/SNF chromatin remodeling ATPase 

To investigate a possible link between SWI/SNF-dependent chromatin remodeling 

complexes and postgermination ABA responses, we probed the effect of mutations in 

each of the four Arabidopsis SWI/SNF ATPases, SYD, BRM, MINU1, and MINU2 
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(Farrona et al., 2004; Flaus et al., 2006; Sang et al., 2012) on ABA-dependent growth 

arrest. Of all mutants tested, those in BRM displayed the most dramatic change in ABA 

sensitivity relative to the wild type (Figures 2-1A and Figure 2-1B). I therefore focused 

further analyses on the role of the BRM complex in ABA-mediated postgermination 

growth inhibition. I therefore focused further analyses on the role of the BRM complex in 

ABA-mediated postgermination growth inhibition. 

 

2.2.2 Increased ABA sensitivity in brm mutants 

After germination of brm-3 hypomorphic (Farrona et al., 2007) mutants on agar plates 

containing submicromolar ABA concentrations, the mutant germinated embryos failed to 

develop green cotyledons and the first pair of true leaves at the lowest ABA 

concentration tested (Figures 2-2A and 2-2B). The wild type did not display growth arrest 

in this condition. Moreover, when I transferred brm-3 and brm-1 null (Hurtado et al., 

2006) mutants to plates containing ABA, the growth of the primary root of was inhibited 

by ABA to a greater extent than wild-type roots (Figures 2-2C and 2-2D). Thus, relative 

to the wild type, brm mutants were hypersensitive to ABA.  

 

2.2.3 Mutations in two components of SWI/SNF complex cause ABA hypersensitive 

phenotype. 

The evolutionally conserved SWI/SNF core complex consists of one ATPase, two SWI3 

subunits, and one SNF5 complex component (Hargreaves and Crabtree, 2011; 

Jerzmanowski, 2007; Kwon and Wagner, 2007; Phelan et al., 1999). The Arabidopsis 
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genome encodes four SWI3 subunit genes (called SWI3A-D) and one SNF5 subunit gene 

(termed BUSHY) (Brzeski et al., 1999; Sarnowski et al., 2005). The morphological 

defects observed in brm null mutants are very similar to those of swi3c null mutants 

(Archacki et al., 2009; Sarnowski et al., 2005). Moreover, BRM and SWI3C show strong 

direct physical interaction (Hurtado et al., 2006), suggesting that SWI3C may be a 

dedicated BRM complex component. Therefore, I next examined the role of SWI3C and 

BUSHY (BSH) in postgermination ABA responses. Null swi3c-2 mutants (Sarnowski et 

al., 2005) showed an ABA-hypersensitive phenotype similar to brm mutants both with 

respect to cotyledon greening (Figures 2-3A and 2-3B) and growth of the primary root 

(Figures 2-3C and 2-3D). Likewise, the hypomorphic bsh-1 mutant (Tang et al., 2008) 

displayed ABA hypersensitive growth arrest (Figures 2-3E and 2-3F). I next examined 

seed germination (radicle emergence) in brm mutants relative to the wild type using a 

range of ABA concentrations. In radicle emergence assays (Müller et al., 2006), brm-3 

hypomorphic mutants did not display significantly altered sensitivity to ABA (Figure 2-

4A). By contrast, brm-1 null mutants were significantly more sensitive to low ABA 

concentrations than the wild type with respect to germination (Figure 2-4B). The 

combined data suggest that BRM affects germination and postgermination response to 

ABA with a very prominent role for BRM in cotyledon greening. 

 

2.2.4 Derepression of ABA-responsive genes in the absence of the stress hormone in 

brm mutnats 

To gain insight into the molecular underpinnings of the observed brm mutant ABA 

hypersensitivity, I analyzed the expression of ABA-responsive genes in brm-3 mutant 
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and wild-type embryos during postgermination development. I employed the 

hypomorphic brm-3 allele because, unlike the brm-1 null mutant, it is fertile and thus 

facilitates testing of homozygous mutant embryos. I examined expression of the bZIP 

transcription factor ABI5 and the B3 transcription factor ABI3, key regulators of 

dormancy and desiccation tolerance in germinated embryos (Finkelstein and Lynch, 

2000; Giraudat et al., 1992; Lopez-Molina and Chua, 2000; Lopez-Molina et al., 2001; 

Lopez-Molina et al., 2002; Parcy and Giraudat, 1997). In addition, I quantified 

expression of the bZIP transcription factor ABF3, which has been shown to act in part in 

a pathway parallel to ABI5 (Finkelstein et al., 2005; Kang et al., 2002; Yoshida et al., 

2010) and HY5, a component of the light signal transduction pathway and direct upstream 

regulator of ABI5 (Chen et al., 2008). Gene expression was examined in plants grown in 

continuous light at day 1.5 and day 2.0 after stratification. These time points were chosen 

because growth arrest is triggered by ABA only before seedling establishment, in the first 

48 h after stratification (Lopez-Molina et al., 2001). I observed derepression of ABI5 

expression in brm-3 relative to the wild type at both time points (4.4-fold and 3.1-fold at 

days 1.5 and 2, respectively; Figure 2-5A). The level of ABI5 mRNA was also much 

higher in brm-3 mutants relative to the wild type 1 h after ABA sensing; however, the 

rate of ABI5 induction by ABA was similar in both genotypes (5.2-fold and 5.1-fold at 

day 1.5 in the wild type and in brm-3, respectively; Figure 2-5A). ABI3 expression, by 

contrast, was strongly derepressed only at day 1.5 in brm-3 mutants relative to the wild 

type. At day 2, ABI3 derepression in brm mutants and induction by ABA was much less 

pronounced. Again, there was no increase in the fold induction of ABI3 expression by 

ABA in the brm mutant relative to the wild type. ABF3 expression was only marginally 
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increased in brm-3 in any condition tested, while HY5 expression was not at all altered in 

the brm-3 mutant (Figure 2-5A). Thus, partial loss of BRM function led to altered 

expression of select ABA-responsive genes; most notably derepression of ABI5 and ABI3 

expression in the absence of exogenous ABA application.  

 

2.2.5 BRM directly represses transcription of ABI5. 

Since SWI/SNF complexes can both activate and repress transcription (Hargreaves and 

Crabtree, 2011; Kwon et al., 2005; Tang et al., 2008), it is possible that the effect of 

BRM on ABI5 and ABI3 mRNA accumulation in the absence of the stress hormone is 

direct. The expression of BRM was consistent with a possible role in regulation of gene 

expression at this stage. BRM was expressed in both 1.5- and 2-d-old germinated 

embryos (Figure 2-5B). To test for binding of BRM to either the ABI5 or the ABI3 locus, 

I used a green fluorescent protein (GFP)–tagged biologically active version of BRM 

(ProBRM:BRM-GFP; (Wu et al., 2012)), which fully rescued the morphological defects 

of the brm-1 null mutant and displayed wild-type levels of BRM expression (Figure 2-6A 

and 2-6B). Using the brm-1 ProBRM:BRM-GFP as a substrate for chromatin 

immunoprecipitation (ChIP), I detected strong BRM binding to the ABI5 promoter and to 

the promoter proximal exon 1 of ABI5, but not to exon 2 (Figures 2-6C and 2-6D). In 

addition, I detected BRM association with the promoter of ABI3 (Figures 2-6C and 2-

6D). To confirm these results, I generated a Hemagglutinin (HA)-tagged version of 

BRM, which rescued the brm-1 null mutant and displayed wild-type levels of BRM 

expression (Figure 2-7A). ChIP using   brm-1 ProBRM:BRM-HA yielded qualitatively 

similar results as brm-1 ProBRM:BRM-GFP (Figure 2-7B). The association of BRM 
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with the ABI5 and ABI3 loci, in combination with the observed derepression of ABI5 and 

ABI3 expression in brm mutants, supports the hypothesis that BRM directly acts on ABI5 

and ABI3 expression. Two of the BRM-bound regions (p1 in ABI5 and p1 in ABI3) 

contain ABREs (Figure 2-6D), cis-elements known to be involved in ABA-induced 

transcriptional responses (Gómez-Porras et al., 2007; Yamaguchi-Shinozaki and 

Shinozaki, 1994). 

I observed high BRM binding at the two loci both in the absence and in the presence of 

ABA treatment (Figure 2-6C). This finding was surprising, given that the main effect of 

loss of BRM activity is derepression of ABI5 and ABI3 expression in the absence of ABA 

treatment (Figure 2-5A). The data suggest that BRM is constitutively bound to the ABI5 

and the ABI3 locus. 

 

2.2.6 ABI5 acts downstream of BRM and is required for brm ABA hypersensitivity 

Prior molecular and genetic experiments have shown that ABI3 acts upstream of ABI5 in 

the ABA-mediated growth arrest of germinated embryos (Lopez-Molina et al., 2002). To 

elucidate the placement of BRM in this genetic pathway, I generated a double mutant 

between brm-3 and the abi5-7 null mutant (Yamagishi et al., 2009). The brm-3 allele was 

employed so we could assay the response in homozygous germinated embryos. While 

brm-3 was hypersensitive to ABA with respect to inhibition of cotyledon greening, abi5-

7 was not responsive to any of the ABA concentrations tested (Figures 2-8A and 2-8B), 

consistent with previous reports (Nambara et al., 2002). Interestingly, the brm-3 abi5-7 

double mutant was also not responsive to any of the ABA concentrations tested; like 

abi5-7, it developed green cotyledons even at the highest dose of ABA tested (Figures 2-
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8A and 2-8B). The data suggest that, with respect to cotyledon greening, ABI5 is 

epistatic to BRM. This finding, combined with the observed ABI5 derepression in brm 

mutants and BRM binding to the ABI5 locus, support the hypothesis that ABI5 acts 

downstream of BRM. I also tested the ABA response of brm-3 abi5-7 double mutant with 

respect to inhibition of primary root growth. As previously reported (Finkelstein et al., 

2005; Miura et al., 2009), the growth of abi5-7 (nulls) roots is inhibited by ABA (Figures 

2-8C and 2-8D), suggesting redundant activities of other ABA-dependent transcription 

factors in root growth arrest. Nevertheless, brm-3 abi5-7 roots were significantly less 

sensitive to 1 or 5 µM ABA than those of brm-3 (Figures 2-8C and 2-8D). These data 

suggest that the increased ABA-dependent inhibition of root growth in the brm-3 mutants 

is in part attributable to the elevated ABI5 expression.  

 

2.2.7 Vegetative growth defects of brm mutant are partly due to derepressed ABA 

responses. 

In the absence of ABA, brm plants are small with short roots (Farrona et al., 2004; Kwon 

et al., 2006). Given our finding that BRM represses ABA responses in the absence of the 

stimulus during postgermination development, I wondered whether some of the brm 

mutant vegetative growth defects are attributable to derepressed ABA responses. I 

therefore monitored root length in double mutants of brm and mutants that display 

reduced ABA sensitivity. Since ABI5 derepression is only partly responsible for root 

growth inhibition in brm mutants (Figure 2-8C and 2-8D), I employed a genetic 

background that displays reduced ABA sensitivity, 35S:HAB1 (Saez et al., 2004). HAB1 

encodes for a PP2C phosphatase, a negative regulator of ABA signaling, that prevents 
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phosphorylation of SnRK2-type kinases (Vlad et al., 2009) and, hence, activation of the 

ABA-responsive transcription factor ABI5 (Nakashima et al., 2009). 35S:HAB1 inhibits 

ABA responses in the absence of ABA treatment because low levels of endogenous ABA 

are able to partially activate ABA-responsive transcription factors in non-ABA-treated 

plants (Rodrigues et al., 2009). For these assays, I used the brm-101 null nonsense allele 

(Kwon et al., 2006) to avoid silencing of the 35S:HAB1 transgene by the T-DNA present 

in brm-1 or brm-3. As previously reported, the growth of 35S:HAB1 was 

indistinguishable from the wild type in the absence of applied ABA (Figure 2-9A; Saez et 

al., 2004). However, 35S:HAB1 was able to partly rescue the root growth defects of brm 

mutants under these conditions (Figures 2-9A and 2-9B). In addition, overall growth of 

brm-101 35S:HAB1 was more vigorous than that of brm-101. At day 7, the cotyledons of 

the double mutant were fully expanded, while those of brm-101 mutants were closed and 

small (Figure 2-9B). I also measured plant fresh weight in the wild type, abi5-7 null 

mutants, brm-3 mutants, and brm-3 abi5-7 double mutants (Figure 2-9C). Removal of 

ABI5 activity from brm-3 mutants caused a partial but significant rescue of the brm 

mutant vegetative growth defect in the absence of ABA treatment (Figure 2-9C). In 

combination, the data suggest that the growth defects of brm mutants are in part due to 

the derepressed ABA response. The partial rescue of vegetative growth defects by 

removal of ABI5 activity suggested that ABI5 levels may also be elevated in brm mutants 

during vegetative development. I therefore analyzed expression of ABA-responsive genes 

in 3-week-old soil-grown brm-1 null mutants and the wild type. ABI3 expression is 

repressed after seedling establishment and remains repressed during vegetative 

development even upon ABA treatment (Nakashima et al., 2006; Perruc et al., 2007; 
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Tang et al., 2008). Likewise, ABI3 mRNA was not detectable in the absence or presence 

of exogenous ABA in the brm-1 mutant (Figure 2-10A). ABI5 expression, on the other 

hand, was derepressed (2.5-fold) in the absence of the stimulus and more strongly 

induced in response to ABA in the brm-1 null mutant relative to the wild type (Figure 2-

10B). In addition, I tested expression of the bZIP transcription factors, ABF3 and 

AREB1/ABF2; both genes are strongly induced by ABA, salt, and drought during 

vegetative development (Fujita et al., 2005). ABF3 expression was elevated in brm-1 

mutants both in the absence and presence of exogenous ABA, while AREB1/ABF2 

expression was not strongly altered. Thus, BRM is also required for repression of ABA-

responsive genes during vegetative development, including that of the bZIP transcription 

factors ABI5 and ABF3. At least in the case of ABI5, the observed effect was direct: BRM 

associated with the ABI5 promoter at this stage, based on ChIP (Figure 2-10C).  

 

2.2.8 brm Mutants Display Enhanced Drought Tolerance 

Mutants with increased sensitivity to ABA, such as pp2c mutants or plants 

overexpressing ABA-responsive transcription factors, display increased dehydration 

tolerance (Kasuga et al., 1999; Rubio et al., 2009). brm mutants were hypersensitive to 

ABA and showed derepression of ABA/drought-responsive gene expression; hence, I 

wondered whether brm mutants might display increased drought stress tolerance. To test 

this possibility, 3-weekold brm mutants and wild-type plants grown on soil were 

subjected to drought treatment. After 3 weeks of growth, water was withheld for 15 d 

(Figure 2-12 and Methods). After water withholding, wild-type and brm-3 plants looked 

dehydrated and displayed severe tissue damage, while brm-1 plants were healthy looking 



	
   42	
  

and maintained greenish leaves. Upon rewatering, both brm mutants recovered quickly 

from the drought stress, while the wild type failed to recover (Figure 2-11). While the 

drought tolerance of brm was remarkable (similar to that described for pp2c triple 

mutants; Figure 2-11), I cannot rule out that it is at least in part attributable to the 

different morphology of the brm mutant leaves, which are curled and smaller than those 

of the wild type. I therefore challenged younger (2-week-old) seedlings grown on plates 

with water stress. At this developmental stage, the brm-3 mutant is morphologically very 

similar to the wild type (Figure 2-11; (Farrona et al., 2007)). Upon drought treatment, 

wild-type plants wilted faster than the brm mutants; in addition, they did not recover as 

well from the drought stress (Figure 2-11B). brm-3 plants again exhibited a significantly 

higher survival rate than the wild type after drought stress and rewatering (Figures 2-11C 

and 2-11D). The data are consistent with the hypothesis that brm mutant drought 

tolerance may be due to altered ABA-response gene expression. To further test this 

hypothesis, I examined whether the drought tolerance of brm-3 plants was due to elevated 

ABI5 expression. Overexpression of ABI5 was previously shown to lead to increased 

drought tolerance (Lopez-Molina et al., 2001). However, brm-3 abi5-7 plants were as 

drought tolerant as brm-3 alone (Figures 2-11E and 2-11F). Thus, either ABI5 does not 

contribute to the drought tolerance of brm mutant or it does so redundantly with other 

ABA-responsive transcription factors, whose expression is also derepressed in brm 

mutants, such as ABF3 (Figure 2-10).  

 

2.2.9 BRM contributes to placement and occupancy of the transcription start site 

proximal nucleosome at the ABI5 locus 
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To gain insight into the mechanism by which the SWI/SNF chromatin remodeling 

ATPase BRM might represses ABI5 expression in the absence of stress hormone 

treatment, I next examined nucleosome positioning and occupancy at the ABI5 promoter 

using high-resolution MNase mapping (Chodavarapu et al., 2010; Rafati et al., 2011). I 

identified two well-positioned nucleosomes in the ABI5 promoter region (-2 and -1 

nucleosome) upstream of a 150-bp nucleosome-depleted region (2150 to 0 bp) (Figure 2-

13). Nucleosome-depleted regions just upstream of the transcription start site (TSS) are 

common in eukaryote promoters (Yen et al., 2012). A typical nucleosome protects; 147 

bp of genomic DNA from MNase digestion (Yen et al., 2012), as was the case for the -2 

and -1 nucleosomes at the ABI5 locus (Figure 2-13). However, the +1 ABI5 nucleosome 

just downstream of the TSS protected; 200 bp of DNA, suggesting that this nucleosome 

may be present in two alternative positions. A nucleosome position prediction program 

(NuPop; (Xi et al., 2010)) identified nucleosome start sites around position +45, while 

the MNase mapping revealed start of the +1 nucleosome close to the +1 position. The 

data suggest that a subset of the +1 nucleosomes are positioned more TSS proximal than 

predicted. In brm mutant plants, I observed derepression of ABI5 expression in the 

absence of ABA treatment (Figure 2-5). Consistent with this observation, I reproducibly 

found a moderate (~ 40%) reduction in nucleosome occupancy at the + 1 position of the 

ABI5 locus coupled with a shift away from the TSS in the absence of ABA treatment in 

brm mutant relative to wild-type germinated embryos (Figure 2-13). No BRM-dependent 

alteration in nucleosome positioning or occupancy was observed at the -2 or -1 

nucleosome of the ABI5 locus (Figure 2-13). Likewise, no strong change in either 

occupancy or positioning of nucleosomes was observed at a control locus, a gypsy-like 
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retrotransposon gene (Figure 2-14). Thus, BRM may be required to promote high 

occupancy and TSS proximity of the +1 nucleosome at the ABI5 locus.  

 

2.2.10 ABA triggered chromatin changes at ABI5 regulatory region 

In addition, I detected reduced occupancy of all three nucleosomes (-1, -2, +1) in 

response to ABA treatment (Figure 2-13). The observed ABA-dependent change in 

nucleosome occupancy was similar in germinated brm-3 and wild-type embryos, 

suggesting that this effect was likely BRM independent (Figure 2-13). The reduced 

nucleosome occupancy in response to ABA was specific to the ABI5 locus; it was not 

observed at the control locus (Figure 2-14).  

 

2.2.11 Chromatin changes at ABI5 regulatory regions during postgermination 

Finally, I noted development dependent changes in the -1 nucleosome occupancy at the 

ABI5 promoter just prior to seedling establishment. The occupancy of the -1 nucleosome 

was very low at day 1.5 in both mock-treated wild-type and brm-3 plants but increased at 

day 2 (Figure 2-15). I did not detect a strong increase in the occupancy of the -2 and +1 

nucleosome between days 1.5 and 2.  

 

2.2.12 Well-positioned nucleosome found at ABA-responsive genes 

(This analysis was performed in collaboration with the lab of Dr. Brian Gregory. 

Dr. Qi Zheng reanalyzed the published dataset.) 
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Visual inspection of a published nucleosome map for vegetative tissues of Arabidopsis 

(Chodavarapu et al., 2010) revealed a well-positioned nucleosome at the ABI5 locus, 

which is located over two consensus (PyACGTGG/TC) ABA response cis elements 

(ABREs) (Fujita et al., 2011). To determine whether well-positioned nucleosomes are 

common in the regulatory regions of ABA-responsive genes, we reanalyzed the published 

dataset (Chodavarapu et al., 2010). Overall promoters of Arabidopsis genes were 

significantly depleted of nucleosomes relative to the genic regions (Figure 2-16A). A 

small number of genes (126 out of 27,379) had a well-positioned nucleosome with high 

occupancy (four-fold genome average) in the proximal promoter region (-250 bp to 0 bp), 

including ABI5. Gene Ontology term (GO) analysis using AgriGo (Du et al., 2010) 

revealed that the 126 genes were enriched for GO terms linked to ABA responses and to 

seed development (p value <1x 10-3, FDR<0.05; Figure 2-16B). These findings support 

the hypothesis that well-positioned promoter nucleosomes may play a role in the 

transcriptional response to the stress hormone ABA. 
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Figure 2-1. ABA responses of SWI/SNF chromatin remodeling mutants 

(A) The percentage of germinated embryos that developed green cotyledons in the 

presence of 0.5 µM ABA in the wild type (WT) and single mutants of the four 

Arabidopsis SWI/SNF subgroup ATPases. The strongest available fertile allele was used 

for each mutant.  

(B) Root growth inhibition of the WT, and null mutants of the four SWI/SNF ATPases in 

the presence of 10 µM ABA relative to that observed on MS media.  
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Figure 2-2. brm mutants are hypersensitive to ABA. 

(A) The percentage of germinated embryos that developed green cotyledons in the 

presence of 0.5 or 0.8 µM ABA in the wild type (WT) and in the hypomorph brm-3 

mutant. Values are mean ± SEM from three independent experiments. Asterisks indicate 

statistical significance compared with wildtype values based on χ2 test (n = 250, P < 1E-

10). (B) Representative pictures for the data shown in (A). Photographs were taken 11 

(MS) and 18 (ABA) d after stratification. (C) Root growth inhibition of brm-1 null and 

brm-3 hypomorph mutants. Values are mean ± SEM from two independent experiments. 

Asterisks indicate statistical significance compared with wild-type values based on one-

tailed Student’s t test (n = 10, P < 0.001). (D) Representative pictures for data shown in 

(C). Photographs were taken 10 d after stratification. 
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Figure 2-3. swi3c-2 and bsh-1 mutants are hypersensitive to ABA. 

(A) The percentage of germinated embryos that developed green cotyledons in the 

presence of 0.5 µM ABA in the wild type (WT) and in the swi3c-2 mutant. Asterisks 

indicate statistical significance based on χ2 test (n = 100, P < 1E-10).  

(B) Representative pictures for data shown in (A) 7 d after stratification.  

(C) Root growth inhibition of the wild type and in the swi3c-2 mutant in the presence of 

10 µM ABA relative to that observed on MS media. Asterisks indicate statistical 

significance based on Student’s t test (n =20, P < 0.001).  

(D) Representative pictures for data shown in (C) 10 d after stratification.  

(E) The percentage of germinated wild-type and bsh-1 embryos that developed green 

cotyledons in the presence of 0.5 µM ABA. Values are mean ± SEM from two 

independent experiments. Asterisks indicate statistical significance based on χ2 test (n = 

200, P < 1E-10).  

(F) Representative pictures for the data shown in (E) 5 d after stratification. 
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Figure 2-4. Germination assay of brm mutants 

(A, B) Effect of ABA on radicle emergence in the wild type (WT), in brm-3 and in brm-

1/+ progeny 3 days after stratification in the absence and presence of 1, 3, 5 µM ABA. 

Samples sizes were brm-3 (n=180) and brm-1/+ (n>500) for each ABA concentration. 

Values are mean ± SEM of 3 independent experiments (Asterisks: **P<0.001, ***P<1E-

10, inverted triangles: no statistical significance based on chi-square analysis P>0.01). 
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Figure 2-5. BRM represses expression of ABI5 and ABI3 during postgermination 

development. 

(A) Quantitative RT-PCR in 1.5- and 2-d-old wild-type (WT) and brm-3 mutants 1 h 

after mock or ABA (50 µM) treatment. 

(B) Quantitative RT-PCR in 1.5- and 2-d-old wild-type plants 1 h after mock or ABA 

treatment. Quantitative RT-PCR expression was normalized over that of EIF4A1, and 

expression levels in the mock-treated wild type were set to 1. Values are mean  ± SEM of 

three technical replicates from one representative experiment. 
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Figure 2-6. BRM directly repress ABI5 and ABI3 expression during 

postgermination development. 

(A) Left: 3-week-old wild-type, brm-1, and brm-1 ProBRM:BRM-GFP plants. Right: 

GFP expression monitored by confocal microscopy in 2-d-old brm-1 ProBRM:BRM-

GFP roots.  

(B) BRM expression (top panel), GFP expression (center panel), and EIF4A1 expression 

(bottom panel) tested by semiquantitative PCR. Bars = 1cm.  

(C) qPCR after anti-GFP ChIP in 1.5-d-old brm-1 ProBRM:BRM-GFP plants after mock 

or ABA (50 µM) treatment for 1 h. Relative enrichment is the percentage of input fold 

change after the percentage of input of the wild type was set to 1. Negative controls: exon 

regions of the retrotransposon TA3 (NC1) and of BRM (NC2). Values are mean ± SEM of 

three technical replicates from one representative experiment.  

(D) Diagram of the loci tested. Horizontal lines below the schematic, regions amplified 

by qPCR; green arrowheads, ABREs; gray box, 5’ or 3’ untranslated region; black box, 

exon; gray line, intergenic region or intron.  
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Figure 2-7. Anti HA ChIP in 1.5-day-old brm-1 ProBRM:BRM-HA plants. 

(A) Left: 3-week-old wild type, brm-1 (inset) and brm-1 ProBRM:BRM-HA. Right: BRM 

expression (top panel) and EIF4A1 expression (bottom panel) tested by semiquantitative 

PCR. Bars = 1cm. 

(B) qPCR after Anti-HA ChIP in 1.5-day-old brm-1 ProBRM:BRM-HA germinated 

embryos after mock or ABA (50 µM) treatment for 1 hr. Non-transformed wild type (Col) 

was used as ChIP control. 
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Figure 2-8. The hypersensitive brm phenotype is due to derepression of ABI5. 

(A) Percentage of the germinated embryos that developed green cotyledons in the 

presence of 0.5, 1.0, and 1.5 µM ABA in the brm-3 abi5-7 double mutants compared with 

abi5-7, brm-3, and the wild type (WT) 7 d after stratification. Values are mean ± SEM 

from three independent experiments. Inverted triangles: no statistical significance 

compared with wild-type values (n > 100, P > 0.01). 

(B) Representative pictures for the data shown in (A). 

(C) Root length in the absence or presence of ABA (1 and 5 µM) in brm-3, abi5-7, and 

brm-3 abi5-7 double mutant plants compared with the wild type. 

Two-day-old plants were transferred to MS media containing ABA, and roots were 

measured at day 7. Asterisks: statistical significance based on one tailed Student’s t test 

(n > 36, *P < 0.01, ***P < 1E-10). 

(D) Representative pictures for the data shown in (C). 
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Figure 2-9. The growth defects of the brm mutant are partially due to ABI5 

derepression and enhanced ABA response. 

(A) Root growth of the brm mutant in an ABA-insensitive mutant background 

(35S:HAB1). The root length of the wild type (WT), 35S:HAB1, brm-101, and brm-101 

35S:HAB1 double mutant was measured 7 d after stratification. Values are mean ± SEM. 

Sample size was as follows: the wild type (n = 28), 35S:HAB1 (n = 27), brm-101 (n = 

49), and brm-101 35S:HAB1 (n = 75). Asterisks indicate statistical significance based on 

one-tailed Student’s t test (P <1E-10). 

(B) Representative pictures of data shown in (A). 

(C) Fresh weight of 4-week-old wild type, abi5-7, brm-3, and brm-3 abi5-7 double 

mutants grown in soil with sufficient water. n > 22 from three independent experiments. 

Asterisks indicate statistical significance (*P < 0.01 and **P < 0.001). 
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Figure 2-10. BRM directly represses ABI5 expression during vegetative 

development. 

 (A) ABI3 expression was not detectable by qRT-PCR in 15-day-old or 21-day-old wild 

type (WT) or brm-1 mutants in the absence and presence of ABA.  

(B) qRT-PCR expression analysis of  three ABF/AREB transcription factors in 21-day-

old brm-1 and WT plants grown in soil. Plants were mock or ABA (100 µM) treated for 1 

hour. Expression was normalized over that of EIF4A1 and expression of untreated WT 

was set to 1.  

(C) qPCR after Anti-HA ChIP in 21-day-old brm-1 ProBRM:BRM-HA plants grown in 

soil after mock or ABA (100 µM) treatment for 1 hr. The percent input of the 

immunoprecipitated DNA was normalized over that of the retrotransposon TA3 (NC1). 

ChIP was also performed in WT plants to monitor IP background. Values indicate mean 

± SEM of three technical replicates from one representative experiment. For a diagram of 

the ABI5 locus see Figure 2-6D.  
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Figure 2-11. brm mutants have increased dehydration tolerance. 

(A) Wild-type (WT), weak brm-3, and null brm-1 mutant plants grown in soil for 3 

weeks followed by continued watering (left) or after drought treatment and rewatering 

(right). 

(B) The effect of dehydration on 2-week-old plate-grown plants. The wild type and brm-3 

mutant during and after drought treatment. The pictures farthest to the right were taken 2 

d after rehydration. 

(C) Survival rate (%) of 2-week-old wild-type and brm-3 seedlings after dehydration for 

3 h under air flow. Values are mean ± SEM from four experiments (n = 42). Asterisks 

indicate statistical significance compared with wild-type values (P < 1E-10). 

(D) Representative pictures for data shown in (C). 

(E) Survival rate (%) of 2-week-old wild type, brm-3, abi5-7, and brm-3 abi5-7 double 

mutants after dehydration for 6 h. Values are mean ± SEM from two independent 

experiments (n > 53). Asterisks indicate statistical significance (***P < 1E-10). Inverted 

triangle indicates no statistical significance (P > 0.01). 

(F) Representative pictures for data shown in (E). 
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Figure 2-12. Measurement of soil water loss during drought treatment and drought 

resistance of positive control plants (pp2c triple mutants) 

(A) Cumulative soil water loss during drought treatment of the plants shown in Figure 2-

11. pp2cs, triple mutants, hab1-1 abi1-2 abi2-2, were included as a positive control for 

the drought treatment. Water was added three times to adjust water content in soil 

between the genotypes (red arrowheads). Values indicate mean ± SEM from two 

experiments. (B) Drought stress tolerance of pp2cs triple mutants. pp2cs triple mutants 

grown in soil without (left) or with (right) drought treatment. For drought treatment the 

picture was taken 5 days after rewatering.  
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Figure 2-13. BRM is required to maintain high occupancy of the +1 nucleosome at 

the ABI5 locus. 

MNase digestion followed by tiled primer qPCR to monitor nucleosome positioning and 

occupancy at the ABI5 locus. MNase qPCR was performed after a 1-h mock or ABA 

treatment in 2-d-old wild-type (WT) and brm-3 mutants. The fraction of undigested 

genomic DNA amplified for each amplicon was normalized to that of the 273 position of 

the negative control locus (gypsy-like retrotransposon; see Figure 2-14). Values are mean 

± SEM of three technical replicates from one representative experiment. The number on 

the x-axis denotes distance (bp) from the TSS (0 bp). Below: Diagram of the positioned 

nucleosomes. Gray ovals, nucleosomes; black arrow, TSS; gray lines, genomic DNA; 

green arrowheads, ABREs.  
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Figure 2-14. No change in nucleosome occupancy at the gypsy-like retrotransposon 

locus. 

Nucleosome occupancy at a control locus (gypsy-like retrotransposon, At4g07700) using 

the same MNAse digested DNA as in Figure 2-13 and Figure 2.15 
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Figure 2-15. Developmental change in nucleosome occupancy at the ABI5 locus 

Relative nucleosome occupancy monitored in 1.5 day-old (blue) and 2 day-old (red) 

untreated wild-type (WT) and brm-3 plants. The number on the x-axis denotes the 

distance (bp) from the transcription start site (TSS; 0 bp). Below: diagram of the 

nucleosome positions. Grey ovals: nucleosomes. Black arrow: transcription start site 

(TSS), Grey lines: genomic DNA. 
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GO-term p-value 

response to abscisic acid stimulus 3.8  x 10E-4 
multicellular organismal development 3.8  x 10E-4 
multicellular organismal process 5.7  x 10E-4 
seed development 5.8  x 10E-4 
response to hormone stimulus 7.6  x 10E-4 
fruit development 8.0  x 10E-4 
post-embryonic development 8.9  x 10E-4 
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Figure 2-16. Promoters are depleted of nucleosomes when compared to genic 

regions. 

(A) The number of well-positioned nucleosomes was determined for all protein-coding 

genes and their position relative to the transcription start site (TSS; red vertical line) was 

plotted. The promoter region (-700 to 0bp) had reduced nucleosome occupancy relative 

to the genic region (0bp to +300 bp). Moreover, the density of well-positioned 

nucleosomes was significantly lower (p->0 for both comparison, χ2-test) for promoter 

regions (-700 to 0 bp or -250 to 0 bp) compared to genic regions (0 to 300 bp).  

(B) Gene Ontology term enrichment using AgriGo (Du et al., 2010) for genes with a 

well-positioned nucleosome near the transcription start site (TSS) based on our analysis 

of a published dataset (Chodavarapu et al., 2010). See text for details.   
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CHAPTER 3. Regulation of SWI/SNF complex activity by ABA sensing 

3.1 Background 

In my previous study, I showed that BRM binds to the ABI5 promoter as strongly after 

ABA sensing as it does in the absence of ABA. However BRM only plays a role in ABI5 

transcription in the absence of ABA. It was therefore surprising that BRM occupancy at 

the ABI5 locus were not reduced in response to ABA. These data suggest that BRM 

complex activity may be altered upon ABA sensing to allow up-regulation of ABI5 by 

either altering the composition of the BRM complex or by post-translational modification 

of BRM in the presence of ABA. Saez et al., 2008 showed that one of the subunits of the 

SWI/SNF complex, SWI3B interact with the HAB1 phosphatase of the core ABA signal 

transduction pathway. Therefore I investigated a possible link between BRM and the 

ABA signal transduction pathway to test whether complex activity is regulated upon 

ABA sensing. I hypothesized that SnRK2 kinase can phosphorylate BRM upon ABA 

sensing and relieve BRM mediated repression of ABA responsive gene expression 

(Figure 3-1). 

 

3.2 Results 

3.2.1 BRM partially acts on ABA signal transduction pathway. 

Overexpression of a negative regulator of ABA responses, the PP2C phosphatase HAB1 

leads to ABA insensitivity (Saez et al., 2004). When exogenous ABA is applied, the 

ABA insensitivity of 35S:HAB1 was partially suppressed in the brm mutant background 

suggesting that ABA signaling acts in part via BRM. This raised the possibility that ABA 
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signal transduction components may play a role in inactivation of BRM upon ABA 

sensing. To test this hypothesis I next examined the physical interaction between BRM 

and SnRK2 kinases as well as PP2C phosphatases. 

 

3.2.2 BRM physically interacts with the components of ABA signal transduction 

pathway in vitro and in vivo. 

Upon ABA sensing, ABA receptor PYR-PYL/RCAR family forms complex with type2 

serine/threonine protein phosphatases (PP2Cs), which frees SnRK2 kinase activity to 

phosphorylate downstream targets (Figure 1-1). In addition to the well-known targets of 

phosphorylation by SnRK2 kinases, such as transcriptions factors that bind ABRE (ABA 

response elements) and ion channels involved in stomata closure, other SnRK2 substrates 

may be present in nucleus (Umezawa et al., 2010). To test for physical interaction 

between BRM and the components of ABA signal transduction pathway, I performed 

yeast two-hybrid assay (Figure 3-3A), Bimolecular Fluorescence Complementation 

(BiFC) (Figure 3-3B) and co-immunoprecipitation assays using Arabidopsis protoplasts 

(Figure 3-3C). In all assays tested, BRM interacted with both SnRK2 kinases (OST1) and 

PP2C phosphatases (HAB1). These data suggest that BRM may be a possible target of 

phosphorylation and de-phosphorylation mediated by SnRK2 kinases and PP2C 

phosphatases, respectively. 

 

3.2.3 The physical interaction between BRM and HAB1 may be ABA signal 

dependent. 
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I found that the strong physical interaction between the possible BRM complex 

component, SWI3B, and HAB1 is abrogated in the presence of the ABA receptor and 

ABA (Figure 3-4), suggesting that the physical interaction between PP2Cs and SWI3B is 

regulated by ABA sensing. I hypothesized that BRM phosphorylation is also ABA 

signaling dependent. I will test if the interaction between BRM and HAB1 is also 

abrogated by ABA signal using the yeast three-hybrid system as well as Arabidopsis 

protoplasts (Figure 4-4).  

 

3.2.4 BRM C-terminal region is phosphorylated in an ABA dependent manner. 

The lab of our collaborator, Dr. Pedro Rodriguez (CSIC-UPV, Spain), found that the C-

terminal domain of BRM is phosphorylated by a SnRK2 kinase in an ABA dependent 

manner (data not shown). They further identified serine 1760 as putative phosphorylation 

site (data not shown). In accordance with their data, published proteomic data (Wang et 

al., 2013) revealed that phosphorylation on serine 1760 and 1762 on BRM C-terminal 

fragment is induced by ABA treatment, in a manner dependent on three SnRK2 kinases, 

SnRK2.2, SnRK2.3 and SnRK2.6 (OST1) (Figure 3-5). These serine residues are well 

conserved in BRM orthologs in different plant species including monocots and eudicots 

(Figure 3-5). Interestingly, when I express small BRM C-terminal fragments in 

protoplasts, I observed high mobility shift in the PAGE compared to the wild type when 

BRM C-terminal fragments containing serine (S1760 and S1762) is subjected to altered 

ABA levels. Although this needs to be further confirmed, the data suggest that these 

residues may be phosphorylated upon ABA sensing. 
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Figure 3-1. A hypothetical model for the regulation of BRM activity by the core 

ABA signaling pathway 

Upon ABA sensing allows SnRK2 kinases to inactivate the BRM complex by 

phosphorylation, which relieves transcriptional repression of target genes by the BRM 

complex.  
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Figure 3-2. Genetic interaction between BRM and HAB1 PP2C phosphatase 

Root growth of the brm mutant in an ABA-insensitive mutant background (35S:HAB1) 

in the presence and absence of ABA. The root length of the wild type (WT), 35S:HAB1, 

brm-101, and brm-101 35S:HAB1 double mutant was measured 10 d after stratification. 

5 day-old seedlings were transferred to MS media with or without ABA and were grown 

5 more days. Values are mean ± SEM from at least 15 plants. Asterisks indicate statistical 

significance between 35S:HAB1 and brm-101 35S:HAB1 double mutant based on one-

tailed Student’s t test (n > 15, * P < 6.4E-07, ** P < 1.2E-E10). 
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Figure 3-3. in vitro and in vivo interactions between BRM and the core components 

of ABA signal transduction pathway, SnRK2 kinases and PP2C phosphatases. 

BRM interacts with OST1 (SnRK2) and HAB1 (PP2C) in Y2H assays (A) or on the basis 

of bimolecular fluorescence complementation (BiFC) in protoplasts (B). (B) BRM N-

terminus and C-terminus were used. MPDB was used as negative control for BRM 

interaction. Left: a representative fluorescent protoplast. Right: Percentage of YFP 

protoplasts. Transfection was done at the same time with equal amount of DNA. Values 

are mean ± SEM from 3 biological replicates. (C) Protoplast co-immunoprecipitation test 

using of FLAG-BRMN and HA-OST1. BRMN protein was precipitated by anti-FLAG 

and HA-OST1 was detected by immune blotting.  
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Figure 3-4. HAB1 binding to SWI3B is disrupted after ABA sensing. 

Yeast-three hybrid assay reveals co-expression of ABA receptors PYLs abrogates the 

interaction of HAB1 with SWI3B in the presence of ABA. ΔN HAB1 was used to 

remove autoactivation of HAB1 in binding domain. ΔN HAB1 (BD) and ABA receptors, 

PYL4 and PYL5 (MCSII, Multiple Cloning Site II) were cloned into same vector, 

pBridge. 10 µM ABA was supplemented in the media. 
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Figure 3-5. BRM C-terminal regions from different plant species contain putative 

BRM phosphorylation sites. 

(A) Diagram of BRM coding region (2193 amino acids). Domains are marked in yellow, 

QLQ; purple, HSA; red, ATPase; green, AT-hook; orange, bromodomain. Diagram was 

modified from (Efroni et al., 2013). Putative phosphorylation sites are marked in red 

(S1760, S1762) and yellow (S1865). 

 (B) The serine residues (S1760, S1762) are phosphorylated in an ABA and SnRK2s 

dependent manner (Wang et al., 2013). Consensus motif of SnRK2s target is shown in 

green and putative phosphorylation residue serine (S1865) is marked in yellow 

(Sirichandra et al., 2010). 
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CHAPTER 4. Discussion and Future direction 

4.1 Discussion 

4.1.1 A role for BRM in repressing water stress responses during post-germination 

development in the absence of the stimulus 

Newly germinated plant embryos are particularly vulnerable to drought stress, which 

triggers a growth arrest similar to that operating during seed development to induce 

desiccation tolerance (Lopez-Molina et al., 2001). Here, I implicate the SWI/SNF 

ATPase BRM in ensuring that the growth arrest pathway is triggered in germinated 

embryos only upon drought sensing/ increased endogenous ABA levels. brm mutants 

were hypersensitive to ABA, especially with respect to cotyledon greening and 

selectively derepressed expression of a subset of ABA response genes in the absence of 

the stimulus, among them ABI3 and ABI5. Moreover, BRM bound to the regulatory 

regions of both genes. ABI3 acts upstream of ABI5 during postgermination development 

(Lopez-Molina et al., 2002). In agreement with these combined observations, ABI5 was 

epistatic to BRM with respect to inhibition of cotyledon greening, indicating that 

derepression of ABI5 expression is the likely cause of the brm mutant’s ABA 

hypersensitivity during this stage of development. Thus, BRM, ABI3, and ABI5 interact 

in a simple genetic pathway, which corresponds to a type 2 coherent feed-forward loop 

(Alon, 2007; Mangan and Alon, 2003), to regulate cotyledon greening (Figure 4-1). The 

type 2 coherent feed-forward loop displays an “off” delay (Alon, 2007; Mangan and 

Alon, 2003); upon ABA sensing, the upregulation of ABI3 and ABI5 would be delayed. 

This would ensure that growth arrest occurs only after a prolonged water stress or ABA 
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signal has been perceived. By contrast, the “on” switch in this type of feed-forward loop 

is rapid (Alon, 2007; Mangan and Alon, 2003). Thus, when ABA/ water stress levels fall 

below a certain threshold, BRM would rapidly repress ABI3 and ABI5 expression. The 

BRM/ABI3/ABI5 module is well suited to manage resource allocation to growth versus 

the stress responses. Not surprisingly, since abi5 mutants show ABA-responsive root 

growth (Finkelstein et al., 2005; Miura et al., 2009), the ABA triggered inhibition of root 

elongation in brm mutants was only partially due to ABI5 derepression. Thus, it is likely 

that BRM represses the expression of other transcription factors that act in parallel with 

ABI5 in root growth inhibition (Figure 4-1). Several additional transcription factors have 

been shown to have a role in the inhibition of root elongation in response to ABA, 

including WRKY transcription factors (Chen et al., 2010a), Auxin Responsive Factor 2 

(Wang et al., 2011a), MYB transcription factors (Zheng et al., 2012), and other bZIP 

transcription factors, such as ABF3 (Yoshida et al., 2010), with the latter two reported to 

act as least in part in parallel with ABI5. 

 

4.1.2 Regulation of ABI5 expression by BRM-dependent and BRM-independent 

alteration of nucleosome positioning and occupancy 

brm mutants cause derepression of ABI5 in the absence of the ABA as well as an ;40% 

reduction of the +1 nucleosome occupancy, with a preferential loss from the TSS 

proximal position. The +1 nucleosome is a frequent target of chromatin remodeling (Yen 

et al., 2012). +1 nucleosomes positioned closer to the TSS are repressive and can 

interfere with the assembly or activity of the transcription initiation complex (Yen et al., 

2012). In addition, transcriptional activation of gene expression is associated with 
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positioning of the +1 nucleosome away from the TSS. Thus, I hypothesize that BRM 

represses ABI5 transcription in the absence of water stress/ABA by promoting high 

occupancy of the +1 nucleosome and by directing this nucleosome from a more favorable 

predicted position to a position more proximal to the TSS. There is precedent for this 

model. Recently, derepression of HIV expression was observed upon loss of the human 

BAF SWI/SNF subfamily complex activity, which resulted in a reduction in the 

occupancy of the +1 nucleosome (Rafati et al., 2011). Consistent with the idea that BRM 

causes increased occupancy and more TSS proximal positioning of the +1 nucleosome at 

the ABI5 locus, BRM very strongly associated with the region of ABI5 locus occupied by 

the +1 nucleosome.  

I also observed stress hormone- and development dependent alterations of the 

nucleosome occupancy at this locus that may explain observed gene expression changes. 

ABI5 expression is induced upon drought or ABA sensing (Lopez-Molina et al., 2001). 

Perception of the ABA stress hormone led to a destabilization (reduced occupancy) of all 

three nucleosomes at this locus. The most pronounced reduction in nucleosome 

occupancy was observed at the -1 position. This nucleosome is positioned over 2 cis-

regulatory elements linked to ABA-responsive gene expression (Yamaguchi-Shinozaki 

and Shinozaki, 2005) and may hence modulate transcription factor access to their binding 

sites. The nucleosome destabilization by ABA was not BRM dependent; it was observed 

both in the brm-3 mutants and in the wild type. Consistent with this, the fold increase in 

ABI5 mRNA levels upon ABA treatment was similar in the wild type and in the brm 

mutant. It is possible that another chromatin regulator causes reduced nucleosome 

occupancy at the ABI5 locus upon stress sensing; alternatively, the nucleosome 
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destabilization could be caused by increased transcriptional activity (Radman-Livaja and 

Rando, 2010). 

Seed maturation is characterized by chromatin condensation, which is reversed 

during imbibition and germination (van Zanten et al., 2011). Consistent with an open 

chromatin configuration in young germinated embryos, the -1 ABI5 nucleosome was 

essentially absent at this stage. At the end of the postgermination phase, ABI5 expression 

is developmentally repressed (Brocard et al., 2002; Lopez-Molina et al., 2001). In 

agreement with this, the occupancy of the -1 nucleosome strongly increased at this stage. 

It is likely that the observed chromatin changes underlie the developmental repression of 

ABI5 expression at the end of postgermination development. Indeed, the ABI5 locus 

continues to display high occupancy of the -1 nucleosome during later stages of 

vegetative development (Chodavarapu et al., 2010). The developmentally induced 

chromatin condensation at the ABI5 locus was observed in both the wild type and in brm 

mutants. In agreement with this finding, brm mutants displayed normal developmental 

downregulation of ABI5 expression (Figure 4-2). The chromatin condensation at the ABI5 

locus during seedling establishment may hence be triggered by other chromatin 

regulators. Mutations in several different chromatin regulators, histone deacetylases, 

Polycomb-repressive complexes, a putative histone methyltransferase, retinoblastoma 

proteins, and the CHD domain chromatin remodeling ATPase PICKLE (PKL), delay the 

switch from the embryo to the seedling stage (Aichinger et al., 2009; Bouyer et al., 2011; 

Gutzat et al., 2011; Kim et al., 2012b; Ogas et al., 1999; Tanaka et al., 2008; Tang et al., 

2008; Zhang et al., 2012). Activity of these chromatin regulators likely contributes to the 

developmental downregulation of ABI5 and ABI3 (Figure 4-1B). Although BRM is not 
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required for developmental repression of ABI5, it does play a role in repression of a 

subset of seed storage proteins (Tang et al., 2008). 

 

4.1.3 Drought Tolerance and Fitness Tradeoffs 

I conclude that during postgermination development BRM ensures that costly stress 

responses are mounted only upon perception of water stress signals to enhance fitness of 

the organism. The role for BRM in restricting stress response gene expression would on 

one hand predict that brm mutants should display defects in growth that are due to 

constitutive activity of the water stress response pathway; on the other hand, brm mutants 

would be expected to display increased drought tolerance (Boyer, 1982; Grill and Ziegler, 

1998). Both expectations were confirmed in our study, supporting the conclusion that 

BRM prevents stress responses in the absence of the stimulus. BRM is thus positioned at 

the nexus of the resource allocation decision between growth and drought tolerance. 

In the coming years, we will likely encounter a global deficit in food supply due to 

increased drought (Battisti, 2009; Cominelli and Tonelli, 2010). To address this 

challenge, it is important to develop new crops that have improved water use efficiency. 

Efforts to engineer drought-resistant plants showed that a single gene change is often not 

sufficient to produce robust drought tolerance, especially in field conditions where water 

stress interacts with other stressors, such as heat and high light intensity (Mittler and 

Blumwald, 2010; Yang et al., 2010). It was proposed that manipulating expression of a 

master transcriptional factor that targets multiple stress response genes would be a more 

promising approach (Cominelli and Tonelli, 2010). An even more global change in the 

plant’s drought tolerance could be achieved via altered chromatin remodeling, as this 
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mechanism can modulate gene expression in many different pathways or of several 

master regulators simultaneously (Kwon and Wagner, 2007). Our studies show increased 

drought resistance of brm mutants at multiple developmental stages. While the molecular 

mechanism for this enhanced drought tolerance remains to be elucidated, a key challenge 

for the future is to generate conditional brm loss-of-function alleles that robustly enhance 

water stress survival without detrimental effects on growth or yield. 

 

4.1.4 Possible mechanisms of regulation of BRM Activity 

In response to ABA treatment, I observed a similar up-regulation of ABI5 mRNA 

abundance relative to mock-treated plants and a similar ABI5 promoter nucleosome 

destabilization in both wild-type and brm mutant germinated embryos. Thus, ABA 

induction of ABI5 expression is apparently BRM independent. Since BRM was still 

bound to the ABI5 locus upon ABA sensing, I hypothesize that BRM may be inactivated 

in the presence of ABA. A possible mechanism for BRM inactivation is alteration of 

BRM complex composition. Alternatively, BRM complex activity may be repressed via 

posttranslational modification(s). Both altered complex composition and posttranslational 

modifications can inactivate metazoan SWI/SNF subgroup complexes (Clapier and 

Cairns, 2009). Continued BRM presence at the ABI5 locus may ensure that costly stress 

responses are mounted only upon perception of water stress signals to enhance fitness of 

the organism the growth arrest response is rapidly turned off once the desiccation 

stress/ABA signal has subsided. Given this model, why do brm mutants accumulate 

higher absolute levels of ABI5 transcript upon ABA treatment than the wild type? The 

higher absolute ABI5 accumulation in brm mutants upon ABA treatment is likely due to 
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the accumulation of transcripts for ABA-dependent transcription factors in brm mutant. 

ABA treatment both activates and stabilizes these transcription factors (Lopez-Molina et 

al., 2003; Miura et al., 2009; Nakashima et al., 2009); this is expected to lead to a high 

absolute level of ABI5 accumulation.  

 

4.1.5 BRM activity is regulated by the core ABA signaling pathway 

In our investigation on how BRM activity may be regulated upon ABA sensing, we 

found that BRM physically interacts with multiple core ABA signaling components, the 

SnRK2 kinase OST1 and the PP2C phosphatase HAB1, in vitro and in vivo. In addition 

BRM is phosphorylated by OST1 in an ABA dependent manner. A putative component 

of BRM complex SWI3B also interacts with OST1 and HAB1, this interaction is 

abrogated by ABA sensing in vitro. Therefore, activity of the BRM complex is likely 

regulated by ABA induced phosphorylation. However by which mechanism ABA 

induced signaling affects BRM nucleosome remodeling activity and which amino acids 

in BRM are the critical targets is currently unknown.  

Phosphorylation is a well-described mechanism of signaling to chromatin-

modifying factors (Badeaux and Shi, 2013). Activated kinase cascades can actively 

transmit signals to chromatin factors to interfere the chromatin landscape in a cue-

dependent manner (Badeaux and Shi, 2013). Phorphorylation-mediated regulation of the 

chromatin remodeler complex components of the human SWI3 and BRG1 by ERK1 is 

important for chromatin compaction during mitosis. Phosphorylation inactivates the 

hSWI/SNF complex and subsequent dephosphorylation by hPP2A restores nucleosome-
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remodeling activity (Sif et al., 1998). It is not known whether which sites on hBRG1 and 

hSWI3 are phosphorylated and whether this mechanism is conserved in plants.  

It is also possible that BRM phosphorylation changes protein-protein interaction between 

the complex components, which may affect chromatin complex activity. BAF60c, a 

SWI/SNF complex component, is associated with the tissue specific transcription factor 

Myo-D throughout muscle cell differentiation (Forcales et al., 2012). However, BAF60c 

can recruit BRG1 to the Myo-D target genes only upon phosphorylation by 

differentiation signal activated p38 kinase (Forcales et al., 2012) suggesting that the 

formation of SWI/SNF complex is regulated by a posttranslational modification. 

 

4.1.6 Biochemical activity of chromatin remodelers and possible activity of BRM at 

the +1 nucleosome of ABI5 Locus 

ATP-dependent chromatin remodeling complexes can be broadly divided into four major 

subfamilies on the basis of their sequence, composition and activities: SWI/SNF, ISWI, 

CHD and the INO80 (Flaus et al., 2006). All four chromatin remodelers share a 

SWI2/SNF2-family ATPase domain and utilize the energy derived from ATP hydrolysis 

to move, destabilize, eject, or restructure nucleosomes (Clapier and Cairns, 2009; 

Hargreaves and Crabtree, 2011). Although the catalytic subunit is similar, the remodelers 

have specialized function. Each ATPase bears unique domains and forms a complex with 

unique subunits in different biological contexts (Clapier and Cairns, 2009; Hargreaves 

and Crabtree, 2011). 
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Data from in vitro biochemical and yeast experiments shows that SWI/SNF 

subfamily proteins have many activities including the ability to slide and eject 

nucleosome, but they lack assembly function (Clapier and Cairns, 2009; Saha et al., 

2006). Therefore SWI/SNF chromatin remodelers are more disruptive and generally 

associated with transcriptional activation by disordering nucleosomes (Clapier and 

Cairns, 2009; Saha et al., 2006). By contrast, ISWI complexes have central roles in 

chromatin assembly, through the organization and regular spacing of nucleosomes 

following DNA replication. ISWI hence primarily promotes transcriptional repression 

(Clapier and Cairns, 2009; Narlikar et al., 2013; Saha et al., 2006). However many 

mammalian studies indicate that SWI/SNF complexes can contribute to both repression 

and activation of gene expression in diverse developmental processes (Hargreaves and 

Crabtree, 2011). It is also known that certain ISWI containing complexes can assist 

transcriptional machinery leading to transcriptional activation (Morillon et al., 2003). The 

CHD chromatin remodelers have characteristic two tandem repeats of chromodomains on 

the N-terminal region of the ATPase domain (Clapier and Cairns, 2009). Certain CHD 

complex also can slide or eject nucleosomes to promote transcription (Clapier and Cairns, 

2009; Denslow and Wade, 2007), but others act as repressors by cooperating with histone 

deacetylase (HDAC) and methyl CpG-binding domain (MBD) proteins (Denslow and 

Wade, 2007). The CHD1 ATPase that belongs to this class also has a similar role to ISWI 

and has functional redundancy with ISWI for nucleosome spacing in the coding regions 

of transcribed genes (Gkikopoulos et al., 2011). The INO80 complex has diverse 

functions including transcriptional activation and repression, DNA repair, DNA 

replication and chromatin-independent function (Conaway and Conaway, 2009). The 
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SWR1 ATPase is highly related to INO80, both remodelers can also exchange histones, 

while SWR1 remove H2A-H2B dimers and replace them with H2A.Z and H2B dimer 

insertion (Mizuguchi et al., 2004), INO80 catalyzes the opposite reaction (Papamichos-

Chronakis et al., 2011).   

One of the main finding from my studies is that the Arabidopsis SWI/SNF 

subgroup ATPase BRM contributes to the placement and occupancy of the transcription 

start proximal nucleosome at the ABI5 locus. The +1 nucleosome is just downstream of 

the TSS. The nuclease protected region, ~200 bp of DNA, is broader than DNA protected 

by mononuclosome (~150 bp). This suggests that +1 nucleosome may be present in two 

alternative positions. A nucleosome position prediction program identified nucleosome 

start sites around 45bp proximal region from the TSS, while MNase mapping showed that 

start of +1 nucleosome is more close to the TSS, suggesting that a subset of the +1 

nucleosome is positioned more TSS proximal than predicted. Mutations in brm cause 

~40% reduction of the +1 nucleosome occupancy with preferential loss from the TSS 

proximal position, as well as derepression of ABI5 in the absence of the ABA. BRM 

strongly associated with the region of ABI5 locus occupied by the +1 nucleosome. 

Therefore I hypothesize that BRM represses ABI5 transcription in the absence of ABA by 

promoting high occupancy of the +1 nucleosome and by directing this nucleosome from a 

more favorable predicted position to a position more proximal to the TSS. How does 

BRM activity cause increased occupancy and more TSS proximal positioning of the +1 

nucleosome at ABI5 locus? One mechanism is that BRM deposits the nucleosome to 

maintain high occupancy at the +1 nucleosome position. However it is well known that 

most SWI/SNF remodelers lack assembly functions, by contrast most ISWI remodelers 
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conduct nucleosome assembly and spacing in nucleosomal arrays. For example, the 

human ISWI-containing factor RSF (remodeling and spacing factor) and ACF (ATP-

dependent chromatin-assembly factor)/ CHRAC (Chromatin assembly complex) complex 

were found to mediate nucleosome deposition onto DNA and form regularly spaced 

nucleosome arrays in the presence of ATP (Fyodorov et al., 2004; Loyola et al., 2003). 

The CHD subgroup member of chromatin remodelers, CHD1 plays a role in histone 

deposition during chromatin assembly in Drosophila in an ATP-dependent manner 

(Konev et al., 2007).  Although these ISWI and CHD1 remodelers are involved in 

nucleosome positioning and deposition, genome-wide nucleosome position studies from 

yeast revealed that deletion of ISW1 and CHD largely did not affect +1 nucleosome 

position (Gkikopoulos et al., 2011). This raises the possibilities that another chromatin 

remodeler is needed to direct +1 nucleosome positioning and occupancy. The ISWI2 in 

yeast is known to affect the positioning of the +1 nucleosome (Whitehouse et al., 2007) 

and is localized to the +1 nucleosome (Yen et al., 2012), although its activity is more 

likely in nucleosome sliding.  In Arabidopsis, two ISWI ATPases have been identified 

and one of them is necessary for normal cell expansion during late embryogenesis and 

has an essential role during female gametogenesis (Huanca-Mamani et al., 2005). What 

types of chromatin changes these roles of ISWI ATPase in plants are due to chromatin 

changes remains to be determined. Arabidopsis SWI/SNF ATPases were identified based 

on the sequence similarity with metazoan SWI/SNF and interaction with Arabidopsis 

SWI3 proteins (SWI/SNF core complex components)(Flaus et al., 2006; Knizewski et al., 

2008; Kwon and Wagner, 2007), however the biochemical activity of SWI/SNF ATPase 

has not been studied in any plant system. Whether the Arabidopsis BRM complex 
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functions in chromatin assembly as seen in ISWI complexes in other species needs to be 

confirmed through the testing of biochemical activity, or alternatively, through an 

analysis of genome-wide nucleosome positioning and occupancy in brm mutant. 

Intriguingly, it has been shown that the SWI/SNF complex is involved in rapid 

nucleosome assembly at the PHO5 promoter during transcriptional repression in S. 

cerevesiae (Schermer et al., 2005). In addition, earlier biochemical experiments showed 

that human SWI/SNF proteins have the ability to transfer histone octamers from donor 

nucleosomes to acceptor DNA (Phelan et al., 2000). 

Another possible mechanism for increasing occupancy and positioning at +1 

nucleosome is nucleosome sliding by chromatin remodelers, which is a common activity 

of SWI/SNF family remodelers. If it is mediated by the sliding activity of BRM, a 

nucleosome shift towards nucleosome free region (NFR) or the nearby nucleosomes is 

expected to see the in brm mutants. There is precedent for a nucleosome-sliding model of 

SWI/SNF proteins to form repressive nucleosome. Recently, derepression of HIV 

expression in human memory T- cells was observed upon loss of human SWI/SNF family 

complex activity, which resulted in a reduction in occupancy of the +1 nucleosome 

(Rafati et al., 2011). In their nucleosome mapping study, the position shift of nucleosome 

to a favored nucleosome-positioning site in the promoter was observed as a consequence 

of loss of SWI/SNF (Rafati et al., 2011). This suggests that human SWI/SNF is essential 

for positioning the repressive nucleosome site to repress HIV gene expression, and that in 

this case this is mediated by sliding activity of SWI/SNF. However in my nucleosome 

mapping data at ABI5 locus, a subtle increase or no increase was observed in nucleosome 

occupancy at nucleosome free region (NFR) or at -1 nucleosome in several independent 



	
   90	
  

biological replicates. The 3’ end of +1 nucleosome in brm mutant even shifts towards to 

TSS. I cannot rule out the possibility that this subtle change is due to the tissue 

complexity that I used for the MNase assay, which might dilute changes in specific cell 

types. Statistic analyses need to be performed to see if subtle increases in nucleosome 

occupancy around the NFR and -1 nucleosome are significant in multiple biological 

replicates. We could also isolate the BRM-expressing cells from germinated embryos by 

FACS sorting to avoid the tissue complexity issue.  

In summary, I favor the hypothesis that BRM contributes to the high occupancy 

of the +1 nucleosome and position to more proximal to the TSS at ABI5 locus by a 

nucleosome assembly mechanism, in part because we do not see a clear sliding effect in 

the nucleosome profile in brm mutant. However there thus far is little evidence that 

SWI/SNF remodeler functions in nucleosome assembly.  

 

4.1.7 Repressive role of BRM in ABI5 transcription 

Although studies have established the role of the SWI/SNF complex in transcriptional 

activation in yeast (Hirschhorn et al., 1992; Martens and Winston, 2003; Petesch and Lis, 

2012; Sudarsanam et al., 2000), studies in mammals provide evidence that SWI/SNF 

family proteins can function in both transcriptional activation and repression and even 

switch between the two modes of action at the same gene (Hargreaves and Crabtree, 

2011; Ho et al., 2009; Rafati et al., 2011; Trotter and Archer, 2008; Zhang et al., 2007). 

Studies indicate the remodeling proteins can play critical roles in gene silencing through 

interactions with a variety of transcriptional co-repressors such as HDAC and REST 
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(Trotter and Archer, 2008). Moreover, genome-wide binding studies of SWI/SNF 

complex components in ES cells showed that they are required for keeping 

developmental genes repressed and in optimizing the levels of ES cell-specific genes to 

maintain the core circuitry (Ho et al., 2009). Genome-wide binding study in Hela cells 

also showed that SWI/SNF components associate with many target genes that are 

transcriptionally repressed (Euskirchen et al., 2011). Therefore it is not surprising that 

BRM can directly repress ABI5 transcription. I hypothesized that BRM represses the 

basal level of ABI5 transcription increasing +1 nucleosome at the TSS proximal region. 

Consistent with my idea, the +1 nucleosome is a frequent target of chromatin remodelers 

(Yen et al., 2012) and +1 nucleosomes positioned near the TSS are repressive and can 

interfere with the transcriptional activation (Yen et al., 2012). Arabidopsis SWI/SNF 

complexes also can function in activation and repression of transcription. In Arabidopsis 

thaliana, there are only a few genes known as direct targets of SWI/SNF complexes 

because genome-wide binding data is not as yet available for these chromatin remodelers. 

BRM and a putative component of SWI/SNF complex are known to have a role in 

transcriptional repression of several target genes including; ABI5 (Han et al., 2012), seed 

storage proteins (Tang et al., 2008), FLC (Farrona et al., 2011; Jegu et al., 2014) and 

transposable elements (Zhu et al., 2013). However the repressive mechanisms mediated 

by SWI/SNF complex at these target genes are different in each case; increase of +1 

nucleosome occupancy (Han et al., 2012), increase of open chromatin by loss of BRM 

(Tang et al., 2008), formation of a DNA loop (Jegu et al., 2014) and long non-coding 

RNA association (Zhu et al., 2013), respectively. Because of limited information on the 

role of SWI/SNF complexes and their target genes in plants, the common or distinct 
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mechanism of different chromatin remodelers in transcriptional regulation remains 

largely unknown.  

 

4.1.8 Chromatin changes at ABI5 locus upon loss of BRM  

In brm mutant plants, I observed derepression of ABI5 expression in the absence 

of ABA treatment. Consistent with this observation, I found a moderate (~40%) reduction 

in nucleosome occupancy at the + 1 position of the ABI5 locus coupled with a shift away 

from the TSS in the absence of ABA treatment in brm mutants relative to wild-type 

germinated embryos. I observed changes by loss of BRM only at the +1 nucleosome, not 

at the -1 and -2 nucleosomes that I monitored. The reduction in nucleosome occupancy 

and shifting at the +1 nucleosome are also found in response to ABA treatment in wild 

type plants. The observed ABA-dependent change in wild type was very similar to 

germinated brm mutants, suggesting that this effect in wild type was likely due to a loss 

of BRM in the presence of ABA. However, unexpectedly we observed strong binding of 

BRM at the ABI5 locus in the presence of ABA where the +1 nucleosome resides. 

Therefore I hypothesized that BRM complex activity may be inactivated upon ABA 

sensing, which resembles brm mutant. To test whether BRM ATPase activity is required 

for +1 nucleosome occupancy and position, we could utilize an ATPase dead mutant of 

BRM. It is expected that these mutants may display brm like phenotype including ABI5 

derepression, reduced nucleosome occupancy and enhanced ABA responses. However it 

needs to be confirmed that ATPase mutation does not affect BRM complex assembly and 

recruitment to ABI5 locus.  
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 Other models are also possible other than a direct role of BRM in +1 nucleosome 

placement and occupancy at the ABI5 locus. Repressor complex such as HDAC (Histone 

deacetylase complex) could associate with BRM complex to repress ABI5 transcription in 

the absence of ABA or water stress. Human BRG1 containing SWI/SNF complex has 

been shown to interact with a variety of transcriptional co-repressors (Trotter and Archer, 

2008). Derepression of ABI5 upon loss of BRM may be a consequence from enhanced 

transcriptional activity due to a failure of a repressive-complex recruitment. Upon ABA 

sensing, repressor complex can leave the ABI5 locus while BRM is retained at that 

position, which allows ABI5 transcription.  

 

4.1.9 Chromatin changes at ABI5 locus during development 

I observed development-dependent changes in the -1 nucleosome occupancy at the ABI5 

promoter just prior to seedling establishment. The occupancy of the -1 nucleosome was 

very low at day 1.5 but increased at day 2 in both wild type and brm mutants (Figure 4-3, 

D1.5 and D2). In addition, the occupancy and position at this nucleosome was not 

changed in brm mutants compared to wild type at both developmental stages, suggesting 

that this change is BRM independent. Hence another chromatin remodeler may be 

involved in this -1 nucleosome assembly. Increased nucleosome occupancy at this 

position may trigger chromatin condensation at ABI5 locus during developmental 

transition. In agreement with this finding, ABI5 expression and its ABA inducibility was 

normally down regulated at the end of postgermination in both wild type and brm 

mutants. Upon seedling establishment (Figure 4-3, D3), ABI5 expression is no longer 
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derepressed in brm mutants and reverts to the wild type level in ABA response. This 

suggests that BRM does not play a role in development-dependent repression of ABI5 

and that other chromatin regulators are involved in this process. 

Developmentally dependent repression of ABI5 has been previously described 

(Perruc et al., 2007). In this study, it is shown that a CHD subgroup chromatin remodeler 

in Arabidopsis, PKL, mediates chromatin changes that are required for eventual shut 

down of ABI5 expression at the end of the postgermination period. Increased expression 

of ABI5 in pkl mutants relative to the wild type in the presence of ABA treatment is 

correlated with a reduced level of two repressive histone modifications, H3K9me2 and 

H3K27me2, at the promoter of ABI5 and a failure of developmental repression of ABI5. 

Although it is not known that ABI5 expression is directly regulated by PKL, repressive 

histone modifications triggered by PKL may be an important role for the formation of a 

condensed chromatin structure at the ABI5 locus upon seedling establishment (Figure 4-3, 

D3). Besides PKL, it is also known that mutations in several chromatin regulators such as 

histone deacetylase, Polycomb repressive complexes and retinoblastoma proteins 

(Bouyer et al., 2011; Gutzat et al., 2011; Kim et al., 2012b; Tanaka et al., 2008) delay the 

developmental switch from embryo to seedling growth. It is possible that these chromatin 

regulators cooperate with PKL to generate the repressive state of the ABI5 locus.  

Interestingly, the transcriptional activity of ABI5 is regained during later 

vegetative development (Brocard et al., 2002; Mizoguchi et al., 2010). I observed that 

ABI5 expression is derepressed at 21 days in brm mutant plants and that BRM binds to 

promoter region of ABI5 locus at this time in development (Figure 4-3, D21). In addition, 



	
   95	
  

nucleosome occupancy at the -1 nucleosome was decreased in brm mutants and ABA 

treated wild type (data not shown in my thesis), which was similar to the effect seen at 

the +1 nucleosome during the postgermination stage of development. Because I did not 

tested BRM binding and nucleosome change in brm mutants at +1 nucleosome region at 

this stage, I do not know whether BRM has an effect on +1 nucleosome at this 

developmental stage. In summary, BRM plays a role in ABI5 repression during 

postgermination and later vegetative stages. This conclusion is based upon ABI5 

derepression, BRM binding to the locus and reduction in nucleosome occupancy at ABI5 

locus in brm at both developmental stages. However the location where the BRM acts to 

promote occupancy and direct the positioning of nucleosome appears to be different 

between two stages. In addition, I observed that ABI5 expression was synergistically 

increased in brm mutants treated with ABA compared to wild type treated with ABA 

during vegetative development (Figure 4-3, D21), indicating that BRM activity at this 

stage is not fully inactivated by ABA.  

 

4.1.10 Chromatin changes at ABI5 locus by ABA treatment during postgermination 

development 

I detected reduced occupancy of all three nucleosomes (-2, -1 and +1) in response to 

ABA treatment. As I described above, a reduction in occupancy at +1 nucleosome in the 

presence of ABA seems to be due to BRM inactivation upon ABA sensing. The ABA-

dependent changes in the upstream nucleosomes (-2 and -1) were similar in both brm and 

wild type, suggesting that this reduction is BRM independent. Reduced occupancy in 
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these nucleosomes is positively correlated with ABI5 induction in the presence of ABA. 

The most pronounced reduction is observed at the -1 nucleosome. This nucleosome is 

positioned over 2 cis-regulatory elements called ABA-responsive elements (ABRE). 

These elements are bound by ABA-activated transcription factors and linked to ABA-

responsive gene expression. Transcription factor binding to these sites may modulate the 

accessibility of DNA in the context of chromatin (Radman-Livaja and Rando, 2010). 

Therefore the transcriptional phenotype of ABI5 in ABA treatment or drought may result 

from two combined effects; increased transcription factor binding to ABREs causing a 

destabilized -1 nucleosome, and increased activity of the transcription initiation complex 

due to a reduction in the +1 nucleosome occupancy by BRM inactivation upon ABA 

sensing.  

 

4.1.11 Link between drought response and BRM 

I observed a drought tolerant phenotype of brm mutant during vegetative development. 

My hypothesis was that drought tolerance of brm mutants is due to increased ABI5 

expression. The ectopic expression of ABI5 can induce stress-responsive gene expression 

so that the plant better tolerates water loss during vegetative development (Lopez-Molina 

et al., 2001). To further test this hypothesis, I examined drought responses in brm abi5 

double mutant during the vegetative stage. However brm abi5 plants were as tolerant as 

brm alone to drought. Thus, these results suggest that either increased ABI5 expression in 

brm mutant does not contribute to drought tolerance or that ABI5 acts redundantly with 

other ABA-responsive transcription factors such as ABF3 in drought response, ABF3 
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expression was also derepressed in brm mutants during vegetative development (Figure 

2-10B). Because the more prominent role of BRM on ABI5 expression is during the 

postgermination stage, testing drought tolerance of brm abi5 double mutant at this stage 

may help to understand whether increased ABI5 expression contribute to drought 

tolerance of brm mutant during this postgermination period. For further insight into the 

role of BRM in drought response during vegetative stage, we need to perform genome-

wide analyses to identify the direct target genes of BRM at this stage and as well as genes 

differentially expressed in brm mutant upon water stress.  

 

4.2 Summary and Future direction  

My study showed that the SWI/SNF chromatin remodeling ATPase BRM plays a role in 

the regulation of drought-responsive gene expression and that BRM promotes positioning 

and occupancy of a nucleosome close to TSS to prevent upregulation of a master drought 

response regulator, ABI5, in the absence of ABA. This mechanism ensures that costly 

stress responses are mounted only upon perception of water stress signals to enhance 

fitness of the organism. This regulatory role of nucleosome positioning and of occupancy 

by BRM is not limited to the genes that I analyzed in my thesis study. Therefore, for the 

future study it would be interesting to perform genome-wide approach as such as MNase-

seq to monitor nucleosome position or occupancy change in wild type and brm mutant 

upon ABA treatment. It would furthermore be of interest to conduct BRM ChIP-seq to 

monitor genome-wide binding of BRM. In addition, RNA-seq using wild-type and brm 

mutant treated ABA or non-treated could be performed to identify ABA-regulated genes 
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whose expression is altered in brm mutants. The data from such genome-wide analyses 

would provide us with the subset of drought responsive genes that are regulated by 

nucleosome positioning by the BRM chromatin remodeling ATPase.  

To gain insight into the detailed mechanism how ABA sensing regulators of 

SWI/SNF chromatin remodeling complex activity, we could test two possibilities. First, 

does BRM complex composition change upon drought stress? We could isolate the BRM 

complex from Arabidopsis nuclei using well-established epitope tagged BRM transgenic 

lines to see if BRM complex composition changes under water stress conditions. Second, 

are core BRM complex components differentially post-translationally modified in stress 

versus non-stress conditions to regulate nucleosome-remodeling activity of BRM? 

Biochemical activity can be tested using the full-length BRM cDNA expressed in insect 

cells with a baculovirus-based expression system, followed by treatment with active or 

kinase dead SnRK2 kinase. 

In summary, I have explored the link between chromatin regulators known to alter 

genome accessibility, the SWI/SNF chromatin remodeling ATPases, and drought stress 

response in the plant model system Arabidopsis thaliana. My thesis work and future 

studies will provide mechanistic insight how environmental stress dependent genome 

accessibility is regulated by the SWI/SNF chromatin remodelers. It may contribute to our 

ability to modulate the drought stress response-pathway, which is crucial for enhancing 

plant tolerance to water stress. 
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Figure 4-1. Model for role of BRM in ABA Responses 

(A) Role of BRM in ABA response at different developmental stages. Left: Inhibition of 

cotyledon greening during postgermination development. BRM negatively regulates the 

expression of two key ABA-related transcription factors ABI5 and ABI3. ABI3 acts 

upstream of ABI5 (Lopez-Molina et al., 2002). Solid arrows, direct regulation; dashed 

arrows, direct or indirect regulation. Right: Inhibition of growth during vegetative 

development. Additional direct BRM targets remain unidentified that act in parallel with 

ABI5. ABI5 has been implicated in drought tolerance (Lopez-Molina et al., 2001), 

although the increase of ABI5 expression alone was not responsible for the brm mutant 

drought tolerance. 

(B) Role of chromatin regulators in expression of ABA-responsive transcription factors 

during postgermination and vegetative development. BRM represses ABI5 expression 

during postgermination and vegetative development and ABI3 during postgermination 

development. Several chromatin regulators influence the developmental transition from 

postgermination development to seedling establishment. HDAC, histone deacetylase; 

PcG, Polycomb; RBR, Retinoblastoma-related protein. 
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Figure 4-2. Developmental regulation of ABI5 and ABI3 expression in the wild type 

and in brm mutants 

qRT-PCR expression analysis of 1.5, 2 and 3-day-old wild type (WT) and brm-3 mutants 

one hour after mock or ABA (50 µM) treatment. Arrow points to transcript level in brm-

3, which is indistinguishable from that in the WT on day 3.  
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Figure 4-3. A model for the role of BRM at ABI5 locus during development 

D1.5 (1.5 day after stratification): BRM binds to the +1 nucleosome. The -1 nucleosome 

is absent at this stage (marked by the red box). ABI5 derepression was observed in brm 

mutant. Fold change (ABA treated/ Mock treated) in ABI5 expression was the same in 

wild type and brm mutant (ABI5 expression was not synergistically regulated by BRM 

and ABA). 

D 2: BRM binds to the +1 nucleosome. The -1 nucleosome (in red dashed box) 

positioned over 2 cis-regulatory elements (ABRES, marked in yellow) in the ABI5 

promoter. ABI5 derepression in brm mutants is still observed, although ABA inducibility 

of ABI5 is slightly decreased.  
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D3: BRM binding at +1 nucleosome has not been tested (dashed orange oval). 

Derepression of ABI5 at this stage is not observed. Overall ABI5 expression becomes 

very low and ABA inducibility is decreased. PKL triggered repressive histone 

modifications (H3K9me2 or H3K27me2) are generated (small red circles), which may 

contribute to formation of condensed chromatin and developmental shut down of ABI5 

expression (Perruc et al., 2007) 

D21: BRM binds to -1 nucleosome and promote -1 nucleosome occupancy. BRM binding 

to +1 nucleosome was not tested (dashed orange oval). ABI5 derepression is regained. 

Fold change (ABA treated/ Mock treated) in ABI5 expression was higher in brm mutant 

than wild type (ABI5 was synergistically increased by loss of BRM and ABA treatment). 

Transcription factors such as ABF3 (purple oval) induced by ABA or water stress also 

affect destabilization of -1 nucleosome.  
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CHAPTER 5. Materials and Methods 

5.1 Plant Growth 

The Arabidopsis thaliana genetic resources used in this study were mostly in the 

Columbia ecotype and have been previously described: swi3c-2 (Sarnowski et al., 2005), 

brm-3 (Farrona et al., 2007), brm-1 (Hurtado et al., 2006), syd-5 (Bezhani et al., 2007), 

bsh-1 (Tang et al., 2008), abi5-7 (Yamagishi et al., 2009), and 35S:HAB1 (Saez et al., 

2004). brm-101 (Kwon et al., 2006) was in the Landsberg erecta ecotype and partly 

introgressed into Columbia. The strong loss-of function minu1-2 (CS413977) and minu2-

1 (SALK_057856) mutants (Sang et al., 2012) and the weak syd-6 (SALK_116266) 

mutant were obtained from the ABRC stock center. The pBRM:BRM-GFP construct was 

previously described (Wu et al., 2012). Plants on plates and in soil were stratified at 4°C 

for 3 d. Plant growth was in inductive photoperiod (16-h-light/8-hdark cycles) or constant 

light at 22°C under white fluorescent light (fluence rate: 110 µmol/m2 s for soil-grown 

plants; 90 µmol/m2 s for media-grown plants). Plant growth on plates was in the presence 

of 1% Sucrose unless indicated otherwise. 

 

5.2 ABA and Drought Treatments 

For germination assays, wild-type, brm-3, and brm-1/+ seeds were placed on Murashige 

and Skoog (MS) plates (no Sucrose) and supplemented with the ABA concentration 

indicated. Radicle emergence was scored 3d after stratification (Müller et al., 2006). 

Well-ripened seeds from plants grown under the same growth condition were used. For 

seedling growth (green cotyledon) assays, seeds were placed on MS media supplemented 
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with various concentration of ABA (0, 0.5, 0.8, 1.0, and 1.5 µM). Plants that had formed 

green cotyledons were counted 7 d after stratification unless indicated otherwise. For root 

growth assays, seeds were germinated on MS plates and seedlings were grown vertically 

for 2 or 5 d, followed by transfer to fresh media lacking or containing ABA (1, 5, or 10 

µM). Plates were incubated vertically for an additional 5 d before measuring root length. 

For ABA treatment for gene expression, ChIP, and MNase studies, seeds were stratified 

for 3 d followed by growth in constant light for the time indicated. Liquid MS media with 

or without 50 µM ABA (Sigma-Aldrich; A1049) was added to the plates for 1 h. For 

studies on 3-week-oldplants, 9-d-old seedlings grown on MS plates were transplanted to 

soil and grown for 12 more days before treatment. 100 µMABA in 0.5mM Tris-HCl, pH 

8.0, or 0.5 mM Tris-HCl, pH 8.0, alone was applied to 3-week-old plants by spraying the 

leaves with an atomizer.  

 

5.3 Dehydration and drought treatment 

Dehydration and drought treatment were performed as previously described (Li et al., 

2008). For drought tolerance test, 9-day-old seedlings grown on MS were transferred to 

soil and grown for an additional 12 days. Each pot was filled with the same amount of 

soil. The pots were evenly spaced in the tray and their position was changed daily to 

minimize edge effects. After placement in the growth chamber, pots were weighed daily 

to ensure equal soil water content until the plants were three weeks old.  Next I withheld 

water for two weeks under 24°C ± 1°C and 45% ± 5 % relative humidity. All pots dried 

at a similar rate based on daily assessment of the pot weight (Figure 2-12). After two 

weeks, watering was resumed. Phenotypes were recorded 5 days after watering. The 
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experiment was repeated four times with at least 12 plants per genotype per experiment. 

One representative experiment is shown.  

2-week-old plants grown on MS plates were dehydrated by placement on filter 

paper (Yamaguchi-Shinozaki and Shinozaki, 1994; Li et al., 2008) with airflow for 3 

hours (25°C ± 1°C, 25% ± 2 % relative humidity) then rehydrated. Survival rate was 

scored and pictures were taken 5 days after rehydration. Plants that had more than four 

green leaves were scored as surviving. The experiment was repeated three times and >20 

plants per genotype per experiment were used. One representative experiment is shown. 

Stainless mesh (S3895, Sigma) was placed on plates containing MS media and 

seeds were sown on top. After 2 weeks of growth, plants were pulled out carefully from 

the media and placed in empty petri plates after removal of excess moisture and media. 

The plants were dehydrated by placement of the plates on a lab bench (24°C ± 1°C, 27% 

± 3 % relative humidity) for 6 hours. Pictures were taken at the time indicated. 6 hours 

after dehydration, water was added and plants were moved back to growth chamber.  

 

5.4 Gene Expression Analyses 

RNA purification, reverse transcription, and quantitative PCR (qPCR) were performed as 

described previously (Pastore et al., 2011) except amplification was monitored by 

EvaGreen fluorescent dye (Biotium). The sequences of primers used are listed in the 

Table 6.1. Confocal imaging was performed as previously described (Winter et al., 

2011). 
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5.5 Chromatin imunoprecipitation 

For the GFP-tagged BRM ChIP, 1.5-d-old brm-1 ProBRM:BRM-GFP germinated seeds 

(0.2 g) were used. The ChIP procedure was as previously described (Kwon et al., 2005). 

Five microliters of anti-GFP rabbit polyclonal antibody (Invitrogen; A6455) was 

employed per 0.2 g of tissue. To quantify BRM enrichment on the genomic DNA, qPCR 

was performed using a StepOnePlus Real-Time PCR system (Applied Biosystems) with 

EvaGreen fluorescent dye (Biotium). The percentage of input was calculated by 

determining 2-ΔCt (= 2-[Ct(ChIP)-Ct(Input)]) as per the ChampionChIP qPCR user manual 

(SABioscience). To facilitate comparison of different genotypes and treatments, the 

calculated percent input of the wild type (control) at the regions tested was set to 1. The 

relative enrichment represents the fold change to the wild type. The exon region of 

retrotransposon TA3 (Johnson et al., 2002) was used as negative control. Primer 

sequences are listed in the Table 6.2. 

 

5.6  MNase Assay 

A total of 0.2 g of 1.5- or 2-d-old plants was harvested in liquid nitrogen. Nuclei and 

chromatin were isolated as previously described (Chodavarapu et al., 2010) with the 

following changes. The isolated nuclei were washed twice with HBB buffer (25 mM 

Tris-Cl pH 7.6, 0.44 M Suc, 10 mM MgCl2, 0.1% Triton-X, 10 mM 

betamercaptoethanol), and the isolated chromatin was digested with 0.1 units/ µL - 0.2 

units/µL (final concentration) of Micrococcal Nuclease (Takara) for 10 min in digestion 

buffer at 37°C. Subsequent steps were performed as previously described (Chodavarapu 

et al., 2010). Mononucleosomes were excised from 1.5% agarose gels and purified using 
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a gel purification kit (Qiagen). The purified DNA was quantified using a NanoDrop ND-

1000 spectrophotometer. Two nanograms of purified DNA were used for qPCR to 

monitor nucleosome occupancy. The fraction of input was calculated as 2-ΔCt (2-[Ct (mono)-Ct 

(gDNA)]) using undigested genomic DNA (Gévry et al., 2009) followed by normalization 

over that of gypsy-like retrotransposon (At4g07700) 273 loci for each sample. The tiled 

primer sets for ABI5 locus used for realtime PCR are listed in Table 6.3. Oligonucleotide 

sequences for gypsy like gene (At4g07700) nucleosome mapping are as previously used 

in (Kumar and Wigge, 2010).  

 

5.7 Statistical Analysis 

For root length and fresh weight measurement, P values were calculated with the one-

tailed Student’s t test. For green cotyledons, germination, and survival rate assays, x2 

analysis was performed. Two random variables (ex. the wild type and brm-3) with two 

types of data (survival or death) were entered in a 2 x 2 contingency table and x2 statistic 

and P values were calculated using a java-based script 

(http://www.physics.csbsju.edu/stats/contingency_NROW_NCOLUMN_form.html).  

For brm-1/+ populations, I assumed Mendelian inheritance of a recessive trait. 

For statistical significance cutoff, I employed a P value lower than 0.01. 

 

5.8 Yeast two hybrid assay 

To test the interaction between BRM and the components of core ABA signaling 

components, BRM N-terminal domain (At2g46020, 1-976 aa) was cloned into either 
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pBridge or pGADT7, and OST1 (At4g33950, 1-362 aa) and HAB1 (At1g72770, 1-511 

aa) were cloned into pGBKT7 or pGADT7, respectively. To test the abrogation of 

interaction between BRM and HAB1 in the presence of ABA signaling, PYL4 

(At2g38310, 1-207 aa) and PYL5 (At5g05440, 1-203 aa) were inserted at MCSII 

(Multiple Cloning Site II) of the pBridge-BRM (BD) construct. To test the abrogation of 

HAB1-SWI3B interaction upon ABA signaling, ΔNHAB1 (179-511aa) and PYLs cloned 

into pBridge and used pACT1-SWI3B (Saez et al., 2008). Each bait and prey plasmids 

were co-transformed into AH109 yeast strain according manufacturer’s manual 

(MATCHMAKER GAL4 Two-Hybrid User Manual, Clontech Laboratories, INC). 

Transformed cells were plated on -Trp -Leu SD media. The resulting colonies were 

grown in -Trp -Leu SD liquid media overnight, adjusted for equal cell density, serially 

diluted (1~ 10-4) and spotted on selection media (-Trp -Leu –His /SD media with 0.1mM, 

0.5mM, 1mM, 2mM 3-AT). To test an abrogation of interaction, 10 µM ABA was 

supplemented into the selection media. The growth of interactors on the different media 

was scored. The interaction test was performed at least 2 times for each bait/prey 

combination.  

 

5.9 Bimolecular fluorescence complementation (BiFC) 

BiFC was performed by transforming plasmids harboring BRM-N (1-976 aa) or BRM-C 

(1541-2193 aa) fused with N-terminal YFP in pSPYNE(R)173 and HAB1 or OST1 fused 

with C-terminal YFP in pSPYCE(MR) (Waadt et al., 2008) into Arabidopsis leaf 

protoplasts. Protoplast isolation and transformation was performed as previously 
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published methods (Yoo et al., 2007).  Confocal microscopy imaging for protoplast BiFC 

was done as preciously described (Yamaguchi et al., 2013). 

 

5.10 Co-immunoprecipitation 

For co-immunoprecipitation assays using protoplast, FLAG-BRMN (Wu et al., 2014 

submitted) in pUC19 and PYL4 in pSPYNE(R)173 were co-transformed into protoplast 

isolated from 35S::HA-HAB1 transgenic lines. FLAG-BRMN in pUC19 and 

pSPYNE(R)173-HAB1 were co-transformed into the protoplast isolated from 35S::HA-

OST1 transgenic plants. pSPYCE(MR)-MPDB was used as a negative control for BRM 

interaction. The nuclear fraction of protoplasts was prepared as previously described 

(Ryu et al., 2007).  Anti-FLAG (2368S, Cell Signaling) and anti-HA-peroxidase high 

affinity (3F10, Roche) were used for co-IP or Western blot, respectively.   

 

5.11 Accession Numbers 

Sequence data for the genes in this article can be found in the Arabidopsis Genome 

Initiative under the following accession numbers: BRM (AT2G46020), SWI3C 

(AT1G21700), SYD (AT2G28290), MINU1 (AT3G06010), MINU2 (AT5G19310), BSH 

(AT3G17590), ABI5 (AT2G36270), ABI3 (AT3G24650), ABF3 (AT4G34000), HY5 

(AT5G11260), ABF2/AREB1 (AT1G45249), EIF4A1 (AT3G13920), TA3 

(AT1G37110), gypsy-like retrotransposon (AT4G07700), HAB1 (AT1G72770), OST1 

(AT4G33950), PYL4 (AT2G38310), PYL5 (AT5G05440). Mutants investigated in this 

study are listed in Methods. 
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5.12 Computational identification of well-positioned nucleosomes 

(This analysis is performed by Dr. Qi Zheng from the lab of Dr. Brian Gragory at Penn) 

To get a genome-wide overview of the nucleosome positioning in Arabidopsis, we 

utilized the published MNase-seq dataset (Chodavarapu et al., 2010) and re-implemented 

the mapping and position-calling procedure as previously described with slight 

modifications, as the published results were based on an earlier genome assembly (TAIR 

7); also the exact coordinates of the called nucleosome positions are not publically 

available. Therefore, we downloaded the raw Illumina sequencing reads for Arabidopsis 

MNase-Seq (qseq) sample (GSM543296) from NCBI SRA and dumped them into 

FASTQ files. The reads were mapped to the TAIR9 genome assembly using bowtie, with 

non-default options set as “-n 2 -e 160 -l 34 -y -k 1 -m 1 -B 1 –nomaqround” and a seed-

match search of up-to 2 mismatches (~6%) of the 34-bp seeds and up-to 4 total 

mismatches (~8%) of the entire 55 nt reads for uniquely-mapped reads. An additional 

parsing step was performed after the alignment to guarantee the 2 and 4 mismatches in 

the seed and full-length reads. The mismatch cut-off levels as well as the seed-lengths 

were chosen after examining the overall base-wide sequencing quality of the whole 

library (data not shown) to facilitate both mapping sensitivity and specificity. 

 The nucleosome positions on Arabidopsis genome were predicted as “nucleosome 

enriched regions” as previously described (Kaplan et al., 2008) as in the published article 

of the data source (Chodavarapu et al., 2010). All aligned reads were first extended to 

147 bp as the average nucleosome size, and the read coverage of every genome base was 

calculated; then genomic regions with aberrantly high read coverage (defined as > 10 
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times the median genomic coverage value) were “trimmed” by filling these regions with 

values 10 times the median coverage value, and normalized against the genomic average 

values to get the base-wise nucleosome occupancy values, as , where 

the occi is the normalized nucleosome occupancy for the ith base-pair, Ci is the (trimmed) 

read coverage for the ith base-pair and the is the genome average read coverage. Last, 

nucleosome positions on the Arabidopsis genome were called as consecutive genomic 

regions >= 50 bp with a minimum occupancy value >= Te, where Te was set to 0.75 to 

optimize the nucleosome calling accuracy as previously described (Kaplan et al., 2008). 

As a result, we called 96,078 well-positioned nucleosomes on Arabidopsis genome with 

median size of 152 bp which is close to the average nucleosome size. 
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Table 5.1 Oligonucleotide sequences for expression analyses 

Gene Forward (5'->3') Reverse (5'->3') 

EIF4A1 aaactcaatgaagtacttgagggaca tctcaaaaccataagcataaataccc 

ABI5 acctaatccaaacccgaacc taccctcctcctcctgtcct 

ABI3 atgtatctcctcgagaacac ccctcgtatcaaatatttgcc 

ABF3 ccttacatgtttgggcgagt tttgagttgcgcaatttctg 

HY5 atgaggagatacggcgagtg ttcagccgcttgttctcttt 

ABF2/AREB1 ttacaacgaaagcaggcaag aaggtcccgactctgtcctc 

 

 

Table 5.2 Oligonucleotide sequences for BRM-GFP/HA ChIP  

Loci  Forward (5'->3') Reverse (5'->3') 

ABI5-p1 aacatttgtgtagccgaagtca aggcgtgaaggtcaacatct 

ABI5-e1 aattctccggcggctttt ccggtggctttgtgttcc 

ABI5-e2 acctaatccaaacccgaacc taccctcctcctcctgtcct 

ABI3-p1 tgtcgcatagccacgtagag acgatgacatatggccgaac 

ABI3-p2 aagtgatttacggcccacac cgtaatgctcctcctcgaaa 

ABI3-e1 attgaatcagcggcaagaag aagagaggttggtggtggtg 

NC1 (TA3) ctgcgtggaagtctgtcaaa ctatgccacagggcagttt 

NC2 (BRM) tacaccaaccccaagaggag cccccaagctttgtttcttt 
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Table 5.3 Oligonucleotide sequences used for ABI5 nucleosome mapping. 

COA* Forward (5'->3') Reverse (5'->3') 

-516 tctaacaagtctactttcaccagcta aggttagattcaagatgttatgaaaga 

-448 tctttcataacatcttgaatctaacct ttgttttgtgaaattgacggatta 

-385 gatcaatcaaattaatccgtcaa gaacgtgaaatttggattagaag 

-309 cgctcttctaatccaaatttca cacgtgtgacttcggctaca 

-241 aacatttgtgtagccgaagtca gtgtcctgcacgtgtctctc 

-199 cacgtgtcgagcctgtga tccaggcccatgatcaga 

-167 gagagacacgtgcaggaca tttcgaccaatggaatgc 

-107 tctgatcatgggcctgga cgcgtggggtctaagaag 

-62 gcattccattggtcgaaa aatgggtaggaggcggtaa 

4 tcacggtgagaacataaatatcaatc cgccggagaattttgactg 

35 tttaccgcctcctacccatt ggaggttctcctccttcacatag 

59 tctctctttctcaaaacctttcagtc ctgagagaatccgcttcttgtt 

90 aattctccggcggctttt ccggtggctttgtgttcc 

119 ggaggagaacctccataacaaga cctgaaaatgaaatctgtgtgtctaa 

135 aacaagaagcggattctctca acaagaaaagtgttaacctgaaaatg 

202 ccggtttttagacacacagatt ccagaaaacgaagacctaaactt 

217 tcattttcaggttaacacttttctt aaggaccagaaaacgaagacc 

 

* Center Of Amplicon: distance (base pairs) form Transcription Start Site 
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