11,808 research outputs found

    Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields

    Full text link
    We investigate medium effects due to density-dependent magnetic moments of baryons on neutron stars under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons. The enhancement naturally affects the chemical potentials of baryons to be large and leads to the increase of a proton fraction. Consequently, it causes the suppression of hyperons, resulting in the stiffness of the equation of state. Under the presumed strong magnetic fields, we evaluate relevant particles' population, the equation of state and the maximum masses of neutron stars by including density-dependent AMMs and compare them with those obtained from AMMs in free space

    Continuous-wave phase-sensitive parametric image amplification

    Full text link
    We study experimentally parametric amplification in the continuous regime using a transverse-degenerate type-II Optical Parametric Oscillator operated below threshold. We demonstrate that this device is able to amplify either in the phase insensitive or phase sensitive way first a single mode beam, then a multimode image. Furthermore the total intensities of the amplified image projected on the signal and idler polarizations are shown to be correlated at the quantum level.Comment: 14 pages, 7 figures, submitted to Journal of Modern Optics, Special Issue on Quantum Imagin

    Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics

    Full text link
    The fundamental guided dispersion characteristics of guided light in a subwavelength dielectric slit channel embedded by two different plasmonic metals are investigated when varying the gap width. As a result, an overall and salient picture of the guided dispersion characteristics is obtained over a wide spectrum range below and above the plasma frequencies of the two different plasmonic metals, which is important preliminary information for analyzing this type of subwavelength waveguide. In particular, the effects of using two different metals on the guided mode dispersions are emphasized in comparison with the effects of using the same plasmonic metal cladding.Comment: 13 pages, 3 figures, typos corrected, reference added, text modifie

    Assessing System of Systems Security Risk and Requirements with OASoSIS

    Get PDF
    When independent systems come together as a System of Systems (SoS) to achieve a new purpose, dealing with requirements conflicts across systems becomes a challenge. Moreover, assessing and modelling security risk for independent systems and the SoS as a whole is challenged by a gap in related research and approaches within the SoSs domain. In this paper, we present an approach for bridging SoS and Requirements Engineering by identifying aligning SoSs concepts to assess and model security risk and requirements. We introduce our OASoSIS approach modifying OCTAVE Allegro for SoSs using CAIRIS (Computer Aided Integration of Requirements and Information Security) with a medical evacuation (MEDEVAC) SoS exemplar for Security Requirements Engineering tool-support. Index Terms—System of Systems, Security, Risk, Human Factors, Requirements Engineering, CAIRIS

    Neutrino reactions via neutral and charged current by Quasi-particle Random Phase Approximation(QRPA)

    Full text link
    We developed the quasi-particle random phase approximation (QRPA) for the neutrino scattering off even-even nuclei via neutral current (NC) and charged cur- rent (CC). The QRPA has been successfully applied for the \beta and \beta\beta decay of relevant nuclei. To describe neutrino scattering, general multipole transitions by weak interactions with a finite momentum transfer are calculated for NC and CC reaction with detailed formalism. Since we consider neutron-proton (np) pairing as well as neutron-neutron (nn) and proton-proton (pp) pairing correlations, the nn + pp QRPA and np QRPA are combined in a framework, which enables to describe both NC and CC reactions in a consistent way. Numerical results for \nu-^{12}C, -^{56}Fe and -^{56}Ni reactions are shown to comply with other theoretical calculations and reproduce well available experimental data

    New Developments in MadGraph/MadEvent

    Full text link
    We here present some recent developments of MadGraph/MadEvent since the latest published version, 4.0. These developments include: Jet matching with Pythia parton showers for both Standard Model and Beyond the Standard Model processes, decay chain functionality, decay width calculation and decay simulation, process generation for the Grid, a package for calculation of quarkonium amplitudes, calculation of Matrix Element weights for experimental events, automatic dipole subtraction for next-to-leading order calculations, and an interface to FeynRules, a package for automatic calculation of Feynman rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea, June 2008. To appear in the proceeding

    Precise Complexity of the Core in Dichotomous and Additive Hedonic Games

    Full text link
    Hedonic games provide a general model of coalition formation, in which a set of agents is partitioned into coalitions, with each agent having preferences over which other players are in her coalition. We prove that with additively separable preferences, it is Σ2p\Sigma_2^p-complete to decide whether a core- or strict-core-stable partition exists, extending a result of Woeginger (2013). Our result holds even if valuations are symmetric and non-zero only for a constant number of other agents. We also establish Σ2p\Sigma_2^p-completeness of deciding non-emptiness of the strict core for hedonic games with dichotomous preferences. Such results establish that the core is much less tractable than solution concepts such as individual stability.Comment: ADT-2017, 15 pages in LNCS styl

    Janus and Multifaced Supersymmetric Theories

    Full text link
    We investigate the various properties Janus supersymmetric Yang-Mills theories. A novel vacuum structure is found and BPS monopoles and dyons are studied. Less supersymmetric Janus theories found before are derived by a simpler method. In addition, we find the supersymmetric theories when the coupling constant depends on two and three spatial coordinates.Comment: 20 pages, no figures, typos, equations corrected. Additional comment

    Frame-like Geometry of Double Field Theory

    Full text link
    We relate two formulations of the recently constructed double field theory to a frame-like geometrical formalism developed by Siegel. A self-contained presentation of this formalism is given, including a discussion of the constraints and its solutions, and of the resulting Riemann tensor, Ricci tensor and curvature scalar. This curvature scalar can be used to define an action, and it is shown that this action is equivalent to that of double field theory.Comment: 35 pages, v2: minor corrections, to appear in J. Phys.
    corecore