4 research outputs found

    Modulation of long term synaptic depression in the nucleus of tractus solitarri by the nutritional status

    No full text
    Ce travail s'inscrit dans le cadre général de l'étude des mécanismes d'intégration des informations viscérales. Nous avons étudié la dépression synaptique à long terme (DLT) dans le noyau du tractus solitaire et sa modulation par le statut nutritionnel Dans la première étude, nous avons caractérisé une DLT au niveau du NTS. Cette DLT, déclenchée par la stimulation des afférences viscérales à basse fréquence, est exprimée au niveau de l’élément présynaptique. Elle met en jeu une libération d'endocannabinoïdes qui en agissant au niveau de l’élément présynaptique réduisent la probabilité de libération de glutamate. De manière surprenante l’élément postsynaptique ne semble jouer aucun rôle dans cette DLT. Elle nécessite une activation séquentielle des récepteurs NMDA, la libération d'anandamide et l'activation des récepteurs aux cannabinoïdes de type 1 (CB1) et l’activité de l’élément présynaptique. Nos résultats suggèrent que cette DLT pourrait être entièrement organisée dans le compartiment présynaptique des afférences viscérales. Dans une deuxième partie du travail, nous nous sommes intéressés à la modulation de cette DLT dépendante des endocannabinoïdes (DLT-eCBs) par le statut nutritionnel. La privation de nourriture pendant 24 h empêche l'induction de la DLT-eCBs par la stimulation des afférences viscérales. Ces effets sont mimés par l'activation des récepteurs à la ghréline au niveau du NTS. Une re-nutrition pendant 3h restaure la DLT-eCBs via l'action périphérique de la Cholécystokinine (CCK) et l'activation de la voie ERK. Au total ces travaux soulignent la forte plasticité des afférences viscérales en fonction du statut nutritionnel.This work joins within the framework of studies about the mechanisms of integration of the visceral informations. We studied long term synaptic depression in the nucleus of tractus solitarii (NTS) and it's modulation during changes in the nutritional status. In the first study, we characterized a long-term synaptic depression (LTD) in the NTS. This LTD, triggered by low frequency stimulation of visceral afferents is expressed at the presynaptic level. It involves release of endocannabinoids that would eventually reduce glutamate release probability. Surprisingly the postsynaptic element seems to play no role in this LTD. It requires sequential activation of NMDA receptors, the release of anandamide and activation of the cannabinoids type 1 receptors (CB1) and presynaptic activation. Our results suggest that this LTD could be entirely organized at the presynaptic compartment of visceral afferents. In the second part of this work, we were interested on the modulation of this endocannabinoïds dependent long-term depression (eCBs-LTD) by the nutritional status. Food deprivation during 24 h prevents the induction of eCBs-LTD by the stimulation of visceral afferents. These effects are mimicked by the activation of ghrelin receptors in the NTS. 3 h refeeding restores the eCBs-LTD via peripheral action of cholecystokinin (CCK) and the activation of the ERK pathway. Altogether, this work emphasizes the high plasticity of visceral afferents and its regulation by the nutritional status

    Anandamide, Cannabinoid Type 1 Receptor, and NMDA Receptor Activation Mediate Non-Hebbian Presynaptically Expressed Long-Term Depression at the First Central Synapse for Visceral Afferent Fibers.

    No full text
    International audiencePresynaptic long-term depression (LTD) of synapse efficacy generally requires coordinated activity between presynaptic and postsynaptic neurons and a retrograde signal synthesized by the postsynaptic cell in an activity-dependent manner. In this study, we examined LTD in the rat nucleus tractus solitarii (NTS), a brainstem nucleus that relays homeostatic information from the internal body to the brain. We found that coactivation of N-methyl-D-aspartate receptors (NMDARs) and type 1 cannabinoid receptors (CB1Rs) induces LTD at the first central excitatory synapse between visceral fibers and NTS neurons. This LTD is presynaptically expressed. However, neither postsynaptic activation of NMDARs nor postsynaptic calcium influx are required for its induction. Direct activation of NMDARs triggers cannabinoid-dependent LTD. In addition, LTD is unaffected by blocking 2-arachidonyl-glycerol synthesis, but its induction threshold is lowered by preventing fatty acid degradation. Altogether, our data suggest that LTD in NTS neurons may be entirely expressed at the presynaptic level by local anandamide synthesis

    Mol Brain

    No full text
    Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory. © 2022, The Author(s)

    Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder

    No full text
    Abstract Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T + Itpr3 tf /J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood
    corecore