9 research outputs found

    A compact low-power EM energy harvester using electrically small loop resonator

    Get PDF
    Electromagnetic (EM) energy harvester is a combination of an antenna or EM collector and a rectifier circuit. It is a concept that has seen applications in a variety of areas, as its essential purpose is to harvest and reuse the ambient microwave power. Compact system solutions for EM energy harvesting are presented and investigated in this work. The objective of this work is to reduce the size of the EM harvesters and simplify the fabrication process. A new approach to design a compact EM energy harvester which based on the concept of an electrically small square-loop collector, is proposed. Coplanar waveguide (CPW) transmission lines are utilized to build the half-wave rectifier. The input impedance of the rectifier is designed to be equaled to the conjugate of the impedance of the square-loop collector at the operating frequency. This method not only reduces the mismatch loss, but also reduces the overall size and simplifies the complexity of the system. The efficiency and the DC output power of the design are examined with respect to the power density on the EM harvester surface. Measurements demonstrate that the system is efficient to harvest EM energy in a low power density environment and generate a reasonable DC power. The proposed EM energy harvester is compact, easy to fabricate and integrate into other devices, and suitable for different energy harvesting applications. The mechanical flexibility of the proposed compact EM energy harvester is also discussed. The EM energy harvester is redesigned and fabricated on a thin flexible substrate. The performances are measured with respect to frequency in both planar and curvature configurations. The results show that the operating frequencies for both planar and curvature configurations do not vary. Furthermore, the output power of the two configurations at the operating frequency are very close to each other. The proposed flexible EM energy harvester requires a simpler fabrication process and a smaller size when compared to the previous work reported in the literature for EM energy harvesting at 2.45 GHz. A single element of EM energy harvester is insufficient for powering common devices. Therefore, two low-cost techniques are proposed and used to increase the capability of the system. In the first method, a parabolic reflector is designed, fabricated and placed behind the system to reflect the beam of parallel rays and concentrates the radiation power at the harvester surface. An alternate technique to boost the output DC power is based on using multi-square-loop collectors. Instead of using a rectifier circuit for each loop collector, multi collectors are combined before feeding into a single rectifier circuit. The experimental results show that these two techniques have significant improvement in the DC output power. The parabolic reflector technique can improve the DC output power by 35%, while in the case of the multi collectors technique, 4 times higher DC output power can be achieved

    Identification of Homogeneous Areas for Drought Frequency Analysis

    Get PDF
    Owing to high spatial and temporal rainfall variability, rationale water management decision-making is complex. Hence, it is essential to identify homogeneous areas to assist water management. This paper focusses on separating the study area into homogeneous groups to predict the risk of occurrence of a drought event. The severity-duration-frequency (SDF) curves were developed to determine the relationship between the probability of a drought occurring with a certain severity and frequency at the selected stations in Victoria, Australia. Two techniques namely cluster analysis and modified Andrews curve were used in grouping study area that have similar climate characteristics with respect to risk of occurrence of drought (i.e. rainfall variability). The study area was divided into six clusters and they adequately covered the study area. A mean drought frequency curve was developed for each homogeneous group to determine the probability of vulnerability to a drought event with a certain severity. The advantage of separating stations into homogenous groups based on similar drought characteristics is that it eliminates the necessity to carry out a detailed drought characteristic analysis for any location of interest. The measurable characteristics of this station will determine its best match with the existing cluster groups

    Energy-Efficient Federated Learning With Resource Allocation for Green IoT Edge Intelligence in B5G

    No full text
    An edge intelligence-aided Internet-of-Things (IoT) network has been proposed to accelerate the response of IoT services by deploying edge intelligence near IoT devices. The transmission of data from IoT devices to the edge nodes leads to large network traffic in the wireless connections. Federated Learning (FL) is proposed to solve the high computational complexity by training the model locally on IoT devices and sharing the model parameters in the edge nodes. This paper focuses on developing an efficient integration of joint edge intelligence nodes depending on investigating an energy-efficient bandwidth allocation, computing Central Processing Unit (CPU) frequency, optimization transmission power, and the desired level of learning accuracy to minimize the energy consumption and satisfy the FL time requirement for all IoT devices. The proposal efficiently optimized the computation frequency allocation and reduced energy consumption in IoT devices by solving the bandwidth optimization problem in closed form. The remaining computational frequency allocation, transmission power allocation, and loss could be resolved with an Alternative Direction Algorithm (ADA) to reduce energy consumption and complexity at every iteration of FL time from IoT devices to edge intelligence nodes. The simulation results indicated that the proposed ADA can adapt the central processing unit frequency and power transmission control to reduce energy consumption at the cost of a small growth of FL time

    A Close Proximity 2-Element MIMO Antenna Using Optically Transparent Wired-Metal Mesh and Polyethylene Terephthalate Material

    No full text
    An optically transparent MIMO antenna with close proximity two-element square patch antenna elements has been presented here to achieve forthcoming requirements of compactness, optical transparency and visual aesthetic for 5G wireless communication and Internet of Things (IoT) applications. A simple, thin optically transparent and more innovative decoupling structure with easier to design closely spaced transparent MIMO antenna configuration is proposed, optimized, and analyzed to achieve higher isolation and diversity gain performance even with close proximity of patch antenna elements. Polyethylene terephthalate (PET) material, a thermoplastic polymer resin of the polyester family, is used as a substrate to achieve optical transparency. The wired metal mesh parameters are considered to achieve the required optical transparency, isolation and radiation performance for the MIMO antenna. The performance of the proposed MIMO antenna is also verified through the fabricated prototype

    A sub 1 GHz ultra miniaturized folded dipole patch antenna for biomedical applications

    Get PDF
    Abstract A miniaturized folded dipole patch antenna (FDPA) design for biomedical applications operating at sub 1 GHz (434 MHz) band is presented. Antenna is fabricated on FR-4 substrate material having dimensions of 16.40 mm ×\times × 8.60 mm ×\times × 1.52 mm (0.023 λ\lambda λ ×\times × 0.012 λ\lambda λ ×\times × 0.002 λ\lambda λ ). Indirect feed coupling is applied through two parallel strips at bottom layer of the substrate. The antenna size is reduced by 83% through lumped inductor placed at the center path of the radiating FDPA, suitable for biomedical (implantable) applications and hyperthermia. Moreover, Impedance matching is achieved without using any Balun transformer or any other complex matching network. The proposed antenna provides an impedance bandwidth of 6 MHz (431–437 MHz) below − 10 dB and a gain of − 31 dB at 434 MHz. The designed antenna is also placed on a human body model to evaluate its performance for hyperthermia through Specific Absorption Rate (SAR), Effective Field Size (EFS), and penetration depth (PD)

    Ownership structure, corporate governance and firm performance in Malaysia

    Get PDF
    Highly corporate concentrated ownership was among the significant factor that brought Malaysia into the 1997/98 financial crisis. Concentrated ownership, as agency theory states, has contributed to lower the effectiveness of corporate governance by considering the interests of majority shareholders at the expense of minorities, having the motivation and power to punish management and either appointing independent directors or sitting personally on the board to protect their interests. To overcome the problem, the MCCG, which largely followed recommendations of the United Kingdom (UK) code, was issued in 2001. However, it was argued that the same requirements of corporate governance practices in the UK code many not work effectively in a country which has a different legal system, business culture and corporate structure. Despite many studies have been conducted to examine the influence among the ownership structure corporate governance and firm performance, the results of the previous studies are still indeterminate. Unlike many previous studies, this study aimed to examine corporate governance in Malaysia by investigating ownership structure independently of corporate governance. Ownership structure was measured by government ownership, local nominees, and foreign nominees, while corporate governance was measured by CEO's duality, number of independent directors, board size, frequency of board meetings, number of women directors and audit committee. Firm performance was measured by return on assets and earnings per share. Data on ownership structure and corporate governance were collected from companies' annual reports, while data regarding firm performance were gathered from Bloomberg database sources and Annual Reports. Data were collected from secondary sources for the period 2003 to 2013 involving 341 Malaysian Public Listed Companies selected using a purposive sampling method involving the companies that have been existed throughout the period of 2003 to 2013. The data were analyzed using descriptive statistics, correlation and panel data regression model. Results of testing the influences among ownership structure, corporate governance and firm performance are found to be mixed. For example, local nominee, CEO duality and board meeting showed weak and negative influences on return on asset while foreign nominee and independent directors had weak and positive influences on earnings per share. The same mixed results were also found between concentrated ownership and corporate governance. This study has added to the body of knowledge from a different perspective of considering ownership structure as an independent variable separated from corporate governance. Finally, the findings of this study expect to assist the relevant authorities to evaluate the present listing requirements, corporate governance practices and the current ownership structure trends in enhancing future corporate performance

    Energy-Efficient Federated Learning With Resource Allocation for Green IoT Edge Intelligence in B5G

    No full text
    An edge intelligence-aided Internet-of-Things (IoT) network has been proposed to accelerate the response of IoT services by deploying edge intelligence near IoT devices. The transmission of data from IoT devices to the edge nodes leads to large network traffic in the wireless connections. Federated Learning (FL) is proposed to solve the high computational complexity by training the model locally on IoT devices and sharing the model parameters in the edge nodes. This paper focuses on developing an efficient integration of joint edge intelligence nodes depending on investigating an energy-efficient bandwidth allocation, computing Central Processing Unit (CPU) frequency, optimization transmission power, and the desired level of learning accuracy to minimize the energy consumption and satisfy the FL time requirement for all IoT devices. The proposal efficiently optimized the computation frequency allocation and reduced energy consumption in IoT devices by solving the bandwidth optimization problem in closed form. The remaining computational frequency allocation, transmission power allocation, and loss could be resolved with an Alternative Direction Algorithm (ADA) to reduce energy consumption and complexity at every iteration of FL time from IoT devices to edge intelligence nodes. The simulation results indicated that the proposed ADA can adapt the central processing unit frequency and power transmission control to reduce energy consumption at the cost of a small growth of FL time

    The prevalence of sedentary behavior among university students in Saudi Arabia

    No full text
    Abstract Background A considerable body of research has demonstrated that reducing sitting time benefits health. Therefore, the current study aimed to explore the prevalence of sedentary behavior (SB) and its patterns. Methods A total of 6975 university students (49.1% female) were chosen randomly to participate in a face-to-face interview. The original English version of the sedentary behavior questionnaire (SBQ) was previously translated into Arabic. Then, the validated Arabic version of the SBQ was used to assess SB. The Arabic SBQ included 9 types of SB (watching television, playing computer/video games, sitting while listening to music, sitting and talking on the phone, doing paperwork or office work, sitting and reading, playing a musical instrument, doing arts and crafts, and sitting and driving/riding in a car, bus or train) on weekdays and weekends. Results SBQ indicated that the total time of SB was considerably high (478.75 ± 256.60 and 535.86 ± 316.53 (min/day) during weekdays and weekends, respectively). On average, participants spent the most time during the day doing office/paperwork (item number 4) during weekdays (112.47 ± 111.11 min/day) and weekends (122.05 ± 113.49 min/day), followed by sitting time in transportation (item number 9) during weekdays (78.95 ± 83.25 min/day) and weekends (92.84 ± 100.19 min/day). The average total sitting time of the SBQ was 495.09 ± 247.38 (min/day) and 58.4% of the participants reported a high amount of sitting time (≥ 7 hours/day). Independent t-test showed significant differences (P ≤ 0.05) between males and females in all types of SB except with doing office/paperwork (item number 4). The results also showed that male students have a longer daily sitting time (521.73 ± 236.53 min/day) than females (467.38 ± 255.28 min/day). Finally, 64.1% of the males reported a high amount of sitting time (≥ 7 hours/day) compared to females (52.3%). Conclusion In conclusion, the total mean length of SB in minutes per day for male and female university students was considerably high. About 58% of the population appeared to spend ≥7 h/day sedentary. Male university students are likelier to sit longer than female students. Our findings also indicated that SB and physical activity interventions are needed to raise awareness of the importance of adopting an active lifestyle and reducing sitting time
    corecore