16 research outputs found
Recommended from our members
Fewer rainy days and more extreme rainfall by the end of the century in Southern Africa
Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator
Recommended from our members
Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation
The impact of climate change on Sahel precipitation is uncertain and has to be widely documented. Recently, it has been shown that Arctic sea ice loss leverages the global warming effects worldwide, suggesting a potential impact of Arctic sea ice decline on tropical regions. However, defining the specific roles of increasing greenhouse gases (GHG) concentration and declining Arctic sea ice extent on Sahel climate is not straightforward since the former impacts the latter. We avoid this dependency by analysing idealized experiments performed with the CNRM-CM5 coupled model. Results show that the increase in GHG concentration explains most of the Sahel precipitation change. We found that the impact due to Arctic sea ice loss depends on the level of atmospheric GHG concentration. When the GHG concentration is relatively low (values representative of 1980s), then the impact is moderate over the Sahel. However, when the concentration in GHG is levelled up, then Arctic sea ice loss leads to increased Sahel precipitation. In this particular case the ocean-land meridional gradient of temperature strengthens, allowing a more intense monsoon circulation. We linked the non-linearity of Arctic sea ice decline impact with differences in temperature and sea level pressure changes over the North Atlantic Ocean. We argue that the impact of the Arctic sea ice loss will become more relevant with time, in the context of climate change
Recommended from our members
Future evolution of the Sahel precipitation zonal contrast in CESM1
The main focus of this study is the zonal contrast of the Sahel precipitation shown in the CMIP5 climate projections: precipitation decreases over the western Sahel (i.e., Senegal and western Mali) and increases over the central Sahel (i.e., eastern Mali, Burkina Faso and Niger). This zonal contrast in future precipitation change is a robust model response to climate change but suffers from a lack of an explanation. To this aim, we study the impact of current and future climate change on Sahel precipitation by using the Large Ensemble of the Community Earth System Model version 1 (CESM1). In CESM1, global warming leads to a strengthening of the zonal contrast, as shown by the difference between the 2060–2099 period (under a high emission scenario) and the 1960–1999 period (under the historical forcing). The zonal contrast is associated with dynamic shifts in the atmospheric circulation. We show that, in absence of a forced response, that is, when only accounting for internal climate variability, the zonal contrast is associated with the Pacific and the tropical Atlantic oceans variability. However, future patterns in sea surface temperature (SST) anomalies are not necessary to explaining the projected strengthening of the zonal contrast. The mechanisms underlying the simulated changes are elucidated by analysing a set of CMIP5 idealised simulations. We show the increase in precipitation over the central Sahel to be mostly associated with the surface warming over northern Africa, which favour the displacement of the monsoon cell northwards. Over the western Sahel, the decrease in Sahel precipitation is associated with a southward shift of the monsoon circulation, and is mostly due to the warming of the SST. These two mechanisms allow explaining the zonal contrast in precipitation change