21 research outputs found

    Gene Networks and Metacommunities: Dispersal Differences Can Override Adaptive Advantage

    Get PDF
    Dispersal is an important mechanism contributing to both ecological and evolutionary dynamics. In metapopulation and metacommunity ecology, dispersal enables new patches to be colonized; in evolution, dispersal counter-acts local selection, leading to regional homogenization. Here, I consider a three-patch metacommunity in which two species, each with a limiting quantitative trait underlain by gene networks of 16 to 256 genes, compete with one another and disperse among patches. Incorporating dispersal among heterogeneous patches introduces a tradeoff not observed in single-patch simulations: if the difference between gene network size of the two species is greater than the difference in dispersal ability (e.g., if the ratio of network sizes is larger than the ratio of dispersal abilities), then genetic architecture drives community outcome. However, if the difference in dispersal abilities is greater than gene network differences, then any adaptive advantages afforded by genetic architecture are over-ridden by dispersal. Thus, in addition to the selective pressures imposed by competition that shape the genetic architecture of quantitative traits, dispersal among patches creates an escape that may further alter the effects of different genetic architectures. These results provide a theoretical expectation for what we may observe as the field of ecological genomics develops.This work was supported in part by a start-up grant from the University of Texas at Austin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Tidal and seasonal effects on survival rates of the endangered California clapper rail: does invasive Spartina facilitate greater survival in a dynamic environment?

    No full text
    Invasive species frequently degrade habitats, disturb ecosystem processes, and can increase the likelihood of extinction of imperiled populations. However, novel or enhanced functions provided by invading species may reduce the impact of processes that limit populations. It is important to recognize how invasive species benefit endangered species to determine overall effects on sensitive ecosystems. For example, since the 1990s, hybrid Spartina (Spartina foliosa × alterniflora) has expanded throughout South San Francisco Bay, USA, supplanting native vegetation and invading mudflats. The endangered California clapper rail (Rallus longirostris obsoletus) uses the tall, dense hybrid Spartina for cover and nesting, but the effects of hybrid Spartina on clapper rail survival was unknown. We estimated survival rates of 108 radio-marked California clapper rails in South San Francisco Bay from January 2007 to March 2010, a period of extensive hybrid Spartina eradication, with Kaplan-Meier product limit estimators. Clapper rail survival patterns were consistent with hybrid Spartina providing increased refuge cover from predators during tidal extremes which flood native vegetation, particularly during the winter when the vegetation senesces. Model averaged annual survival rates within hybrid Spartina dominated marshes before eradication (Ŝ = 0.466) were greater than the same marshes posttreatment (Ŝ = 0.275) and a marsh dominated by native vegetation (Ŝ = 0.272). However, models with and without marsh treatment as explanatory factor for survival rates had nearly equivalent support in the observed data, lending ambiguity as to whether hybrid Spartina facilitated greater survival rates than native marshland. Conservation actions to aid in recovery of this endangered species should recognize the importance of available of high tide refugia, particularly in light of invasive species eradication programs and projections of future sea-level rise. © 2014 Springer Science+Business Media Dordrecht (outside the USA)
    corecore