1,208 research outputs found

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Impact of Reporting Bias in Network Meta-Analysis of Antidepressant Placebo-Controlled Trials

    Get PDF
    BACKGROUND: Indirect comparisons of competing treatments by network meta-analysis (NMA) are increasingly in use. Reporting bias has received little attention in this context. We aimed to assess the impact of such bias in NMAs. METHODS: We used data from 74 FDA-registered placebo-controlled trials of 12 antidepressants and their 51 matching publications. For each dataset, NMA was used to estimate the effect sizes for 66 possible pair-wise comparisons of these drugs, the probabilities of being the best drug and ranking the drugs. To assess the impact of reporting bias, we compared the NMA results for the 51 published trials and those for the 74 FDA-registered trials. To assess how reporting bias affecting only one drug may affect the ranking of all drugs, we performed 12 different NMAs for hypothetical analysis. For each of these NMAs, we used published data for one drug and FDA data for the 11 other drugs. FINDINGS: Pair-wise effect sizes for drugs derived from the NMA of published data and those from the NMA of FDA data differed in absolute value by at least 100% in 30 of 66 pair-wise comparisons (45%). Depending on the dataset used, the top 3 agents differed, in composition and order. When reporting bias hypothetically affected only one drug, the affected drug ranked first in 5 of the 12 NMAs but second (n = 2), fourth (n = 1) or eighth (n = 2) in the NMA of the complete FDA network. CONCLUSIONS: In this particular network, reporting bias biased NMA-based estimates of treatments efficacy and modified ranking. The reporting bias effect in NMAs may differ from that in classical meta-analyses in that reporting bias affecting only one drug may affect the ranking of all drugs

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Do pediatricians manage influenza differently than internists?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about how pediatricians or internists manage influenza symptoms. Recent guidelines on antiviral prescribing by the Centers for Disease Control and Prevention (CDC) make almost no distinction between adults and children. Our objective was to describe how pediatricians in two large academic medical institutions manage influenza and compare them to internists.</p> <p>Methods</p> <p>At the end of the 2003–4 influenza season, we conducted a cross sectional on-line survey of physician knowledge, attitudes and practices regarding rapid diagnostic testing and use of antiviral therapy for influenza at two large academic medical centers, one in Massachusetts and the other in Texas. We collected data on self-reported demographics, test use, prescribing practices, and beliefs about influenza and anti-influenza drugs.</p> <p>Results</p> <p>A total of 107 pediatricians and 103 internists completed the survey (response rate of 53%). Compared to internists, pediatricians were more likely to perform rapid testing (74% vs. 47%, p < 0.0001), to use amantadine (88% vs. 48%, p < 0.0001), to restrict their prescribing to high-risk patients (86% vs. 53%, p < 0.0001), and to believe that antiviral therapy could decrease mortality (38% vs. 22%, p = 0.01). Other beliefs about antiviral therapy did not differ statistically between the specialties. Internists were more likely to be unfamiliar with rapid testing or not to have it available.</p> <p>Conclusion</p> <p>Pediatricians and internists manage influenza differently. Evidence-based guidelines addressing the specific concerns of each group would be helpful.</p

    Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    Get PDF
    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus

    Are groups more rational than individuals? A review of interactive decision making in groups

    Get PDF
    Many decisions are interactive; the outcome of one party depends not only on its decisions or on acts of nature but also on the decisions of others. In the present article, we review the literature on decision making made by groups of the past 25 years. Researchers have compared the strategic behavior of groups and individuals in many games: prisoner's dilemma, dictator, ultimatum, trust, centipede and principal-agent games, among others. Our review suggests that results are quite consistent in revealing that groups behave closer to the game-theoretical assumption of rationality and selfishness than individuals. We conclude by discussing future research avenues in this area

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    A Game-Theoretic Model of Interactions between Hibiscus Latent Singapore Virus and Tobacco Mosaic Virus

    Get PDF
    Mixed virus infections in plants are common in nature and their interactions affecting host plants would depend mainly on plant species, virus strains, the order of infection and initial amount of inoculum. Hence, the prediction of outcome of virus competition in plants is not easy. In this study, we applied evolutionary game theory to model the interactions between Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) in Nicotiana benthamiana under co-infection in a plant host. The accumulation of viral RNA was quantified using qPCR at 1, 2 and 8 days post infection (dpi), and two different methods were employed to predict the dominating virus. TMV was predicted to dominate the game in the long run and this prediction was confirmed by both qRT-PCR at 8 dpi and the death of co-infected plants after 15 dpi. In addition, we validated our model by using data reported in the literature. Ten out of fourteen reported co-infection outcomes agreed with our predictions. Explanations were given for the four interactions that did not agree with our model. Hence, it serves as a valuable tool in making long term predictions using short term data obtained in virus co-infections
    corecore