1,451 research outputs found
What two models may teach us about duality violations in QCD
Though the operator product expansion is applicable in the calculation of
current correlation functions in the Euclidean region, when approaching the
Minkowskian domain, violations of quark-hadron duality are expected to occur,
due to the presence of bound-state or resonance poles. In QCD finite-energy sum
rules, contour integrals in the complex energy plane down to the Minkowskian
axis have to be performed, and thus the question arises what the impact of
duality violations may be. The structure and possible relevance of duality
violations is investigated on the basis of two models: the Coulomb system and a
model for light-quark correlators which has already been studied previously. As
might yet be naively expected, duality violations are in some sense "maximal"
for zero-width bound states and they become weaker for broader resonances whose
poles lie further away from the physical axis. Furthermore, to a certain
extent, they can be suppressed by choosing appropriate weight functions in the
finite-energy sum rules. A simplified Ansatz for including effects of duality
violations in phenomenological QCD sum rule analyses is discussed as well.Comment: 17 pages, 6 figures; version to appear in JHE
Limit Cycles in Four Dimensions
We present an example of a limit cycle, i.e., a recurrent flow-line of the
beta-function vector field, in a unitary four-dimensional gauge theory. We thus
prove that beta functions of four-dimensional gauge theories do not produce
gradient flows. The limit cycle is established in perturbation theory with a
three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our
result. Improved description of three-loop calculatio
NLO QCD Corrections to -to-Charmonium Form Factors
The meson to S-wave Charmonia transition form factors are
calculated in next-to-leading order(NLO) accuracy of Quantum
Chromodynamics(QCD). Our results indicate that the higher order corrections to
these form factors are remarkable, and hence are important to the
phenomenological study of the corresponding processes. For the convenience of
comparison and use, the relevant expressions in asymptotic form at the limit of
for the radiative corrections are presented
N-player quantum games in an EPR setting
The -player quantum game is analyzed in the context of an
Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's
strategies are not unitary transformations as in alternate quantum
game-theoretic frameworks, but a classical choice between two directions along
which spin or polarization measurements are made. The players' strategies thus
remain identical to their strategies in the mixed-strategy version of the
classical game. In the EPR setting the quantum game reduces itself to the
corresponding classical game when the shared quantum state reaches zero
entanglement. We find the relations for the probability distribution for
-qubit GHZ and W-type states, subject to general measurement directions,
from which the expressions for the mixed Nash equilibrium and the payoffs are
determined. Players' payoffs are then defined with linear functions so that
common two-player games can be easily extended to the -player case and
permit analytic expressions for the Nash equilibrium. As a specific example, we
solve the Prisoners' Dilemma game for general . We find a new
property for the game that for an even number of players the payoffs at the
Nash equilibrium are equal, whereas for an odd number of players the
cooperating players receive higher payoffs.Comment: 26 pages, 2 figure
Rotation Curves of Spiral Galaxies
Rotation curves of spiral galaxies are the major tool for determining the
distribution of mass in spiral galaxies. They provide fundamental information
for understanding the dynamics, evolution and formation of spiral galaxies. We
describe various methods to derive rotation curves, and review the results
obtained. We discuss the basic characteristics of observed rotation curves in
relation to various galaxy properties, such as Hubble type, structure,
activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137,
200
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Patients’ Perceptions of Memory Functioning Before and After Surgical Intervention to Treat Medically Refractory Epilepsy.
Purpose:One risk associated with epilepsy surgery is memory loss, but perhaps more important is how patients perceive changes in their memories. This longitudinal study evaluated changes in memory self-reports and investigated how self-reports relate to changes on objective memory measures in temporal or extratemporal epilepsy patients who underwent surgery.
Methods: Objective memory (Wechsler Memory Scale–Revised) and subjective memory self-reports (Memory Assessment Clinics Self-Rating Scale) were individually assessed for 136 patients ∼6 months before and 6 months after surgery. A measure of depressive affect (Beck Depression Inventory–2nd Edition) was used to control variance attributable to emotional distress.
Results: Despite a lack of significant correlational relationships between objective and subjective memory for the entire sample, significant correlations between objective memory scores and self-reports did emerge for a subset of patients who evidenced memory decline. Differences also were found in the subjective memory ratings of temporal lobe versus extratemporal patients. Temporal lobe patients rated their memories more negatively than did extratemporal patients and were more likely to report significant improvements in their memory after surgery.
Conclusions: In general, patients were not accurate when rating their memories compared to other adults. However, patients with significant declines in their memories were sensitive to actual changes in their memories over time relative to their own personal baselines
- …