5 research outputs found

    The 'long' 16th century : a key period of animal husbandry change in England

    Get PDF
    Although many historians have extensively discussed the agricultural history of England between the Late Middle Ages and the Modern Era, this period of crucial changes has received less attention by archaeologists. In this paper, zooarchaeological evidence dated between the Late Middle Ages and the Early Modern period is analysed to investigate changes in animal husbandry during the ‘long’ sixteenth century. The size and shape of the main domestic animals (cattle, sheep, pig and chicken) is explored through biometrical data and discussed in line with evidence of taxonomic frequencies, ageing and sex ratios. Data from 12 sites with relevant chronologies and located in different areas of the country are considered. The results show that, although a remarkable size increase of animals occurred in England throughout the post-medieval period, much of this improvement occurred as early as the sixteenth century. The nature and causes of such improvement are discussed, with the aim of understanding the development of Early Modern farming and the foundations of the so-called Agricultural Revolution

    Global distribution of sediment-hosted metals controlled by craton edge stability

    Get PDF
    Sustainable development and the transition to a clean-energy economy drives ever-increasing demand for base metals, substantially outstripping the discovery rate of new deposits and necessitating dramatic improvements in exploration success. Rifting of the continents has formed widespread sedimentary basins, some of which contain large quantities of copper, lead and zinc. Despite over a century of research, the geological structure responsible for the spatial distribution of such fertile regions remains enigmatic. Here, we use statistical tests to compare deposit locations with new maps of lithospheric thickness, which outline the base of tectonic plates. We find that 85% of sediment-hosted base metals, including all giant deposits (>10 megatonnes of metal), occur within 200 kilometres of the transition between thick and thin lithosphere. Rifting in this setting produces greater subsidence and lower basal heat flow, enlarging the depth extent of hydrothermal circulation available for forming giant deposits. Given that mineralization ages span the past two billion years, this observation implies long-term lithospheric edge stability and a genetic link between deep Earth processes and near-surface hydrothermal mineral systems. This discovery provides an unprecedented global framework for identifying fertile regions for targeted mineral exploration, reducing the search space for new deposits by two-thirds on this lithospheric thickness criterion alone

    Unstructured data in marketing

    No full text

    The contribution of science parks: a literature review and future research agenda

    No full text
    corecore