5 research outputs found

    Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

    Get PDF
    Intense lasers interacting with dense targets accelerate relativistic electron beams, whichtransport part of the laser energy into the target depth. However, the overall laser-to-targetenergy coupling efficiency is impaired by the large divergence of the electron beam, intrinsicto the laser-plasma interaction. Here we demonstrate that an efficient guiding ofMeV electrons with about 30MA current in solid matter is obtained by imposing a laserdrivenlongitudinal magnetostatic field of 600 T. In the magnetized conditions the transportedenergy density and the peak background electron temperature at the 60-ÎŒm-thicktarget's rear surface rise by about a factor of five, as unfolded from benchmarked simulations.Such an improvement of energy-density flux through dense matter paves the ground foradvances in laser-driven intense sources of energetic particles and radiation, driving matter toextreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessibleat the laboratory scale and achieving high-gain laser-driven thermonuclear fusion

    Dosimetric calibration of GafChromic HD-V2, MD-V3, and EBT3 films for dose ranges up to 100 kGy

    No full text
    A dosimetric calibration of three types of radiochromic films (GafChromicTM HD-V2, MD-V3, and EBT3) was carried out for absorbed doses (D) ranging up to 100 kGy using a 130 TBq Co60 γ-ray source. The optical densities (ODs) of the irradiated films were acquired with the transmission-mode flatbed film scanner EPSON GT-X980. The calibration data were cross-checked using the 20-MeV proton beam from the azimuthally varying field cyclotron at the Research Center for Nuclear Physics in Osaka University. These experimental results not only present the measurable dose ranges of the films depending on the readout wavelength, but also show consistency with our hypothesis that the OD response curve [log(OD)–log(D) curve] is determined by the volumetric average of the absorption dose and does not strongly depend on the type of radiation for the excitation

    Dosimetric calibration of GafChromic HD-V2, MD-V3, and EBT3 films for dose ranges up to 100 kGy

    Get PDF
    A dosimetric calibration of three types of radiochromic films (GafChromicTM HD-V2, MD-V3, and EBT3) was carried out for absorbed doses (D) ranging up to 100 kGy using a 130 TBq Co60 γ-ray source. The optical densities (ODs) of the irradiated films were acquired with the transmission-mode flatbed film scanner EPSON GT-X980. The calibration data were cross-checked using the 20-MeV proton beam from the azimuthally varying field cyclotron at the Research Center for Nuclear Physics in Osaka University. These experimental results not only present the measurable dose ranges of the films depending on the readout wavelength, but also show consistency with our hypothesis that the OD response curve [log(OD)–log(D) curve] is determined by the volumetric average of the absorption dose and does not strongly depend on the type of radiation for the excitation

    Summary of laser plasma physics sessions at the first AAPPS-DPP conference

    No full text
    corecore